Yapeng Ye (Purdue University), Zhuo Zhang (Purdue University), Fei Wang (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University)

Network protocol reverse engineering is an important challenge with many security applications. A popular kind of method leverages network message traces. These methods rely on pair-wise sequence alignment and/or tokenization. They have various limitations such as difficulties of handling a large number of messages and dealing with inherent uncertainty. In this paper, we propose a novel probabilistic method for network trace based protocol reverse engineering. It first makes use of multiple sequence alignment to align all messages and then reduces the problem to identifying the keyword field from the set of aligned fields. The keyword field determines the type of a message. The identification is probabilistic, using random variables to indicate the likelihood of each field (being the true keyword). A joint distribution is constructed among the random variables and the observations of the messages. Probabilistic inference is then performed to determine the most likely keyword field, which allows messages to be properly clustered by their true types and enables the recovery of message format and state machine. Our evaluation on 10 protocols shows that our technique substantially outperforms the state-of-the-art and our case studies show the unique advantages of our technique in IoT protocol reverse engineering and malware analysis.

View More Papers

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

Dinosaur Resurrection: PowerPC Binary Patching for Base Station Analysis

Uwe Muller, Eicke Hauck, Timm Welz, Jiska Classen, Matthias Hollick (Secure Mobile Networking Lab, TU Darmstadt)

Read More

“Lose Your Phone, Lose Your Identity”: Exploring Users’ Perceptions...

Michael Lutaaya, Hala Assal, Khadija Baig, Sana Maqsood, Sonia Chiasson (Carleton University)

Read More

Trust the Crowd: Wireless Witnessing to Detect Attacks on...

Kai Jansen (Ruhr University Bochum), Liang Niu (New York University), Nian Xue (New York University), Ivan Martinovic (University of Oxford), Christina Pöpper (New York University Abu Dhabi)

Read More