Ahmed Salem (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Machine learning (ML) has established itself as a cornerstone for various critical applications ranging from autonomous driving to authentication systems. However, with this increasing adoption rate of machine learning models, multiple attacks have emerged. One class of such attacks is training time attack, whereby an adversary executes their attack before or during the machine learning model training. In this work, we propose a new training time attack against computer vision based machine learning models, namely model hijacking attack. The adversary aims to hijack a target model to execute a different task than its original one without the model owner noticing. Model hijacking can cause accountability and security risks since a hijacked model owner can be framed for having their model offering illegal or unethical services. Model hijacking attacks are launched in the same way as existing data poisoning attacks. However, one requirement of the model hijacking attack is to be stealthy, i.e., the data samples used to hijack the target model should look similar to the model's original training dataset. To this end, we propose two different model hijacking attacks, namely Chameleon and Adverse Chameleon, based on a novel encoder-decoder style ML model, namely the Camouflager. Our evaluation shows that both of our model hijacking attacks achieve a high attack success rate, with a negligible drop in model utility.

View More Papers

PASS: A System-Driven Evaluation Platform for Autonomous Driving Safety...

Zhisheng Hu (Baidu Security), Junjie Shen (UC Irvine), Shengjian Guo (Baidu Security), Xinyang Zhang (Baidu Security), Zhenyu Zhong (Baidu Security), Qi Alfred Chen (UC Irvine) and Kang Li (Baidu Security)

Read More

“So I Sold My Soul“: Effects of Dark Patterns...

Oksana Kulyk (ITU Copenhagen), Willard Rafnsson (IT University of Copenhagen), Ida Marie Borberg, Rene Hougard Pedersen

Read More

Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice

Bingyong Guo (Institute of Software, Chinese Academy of Sciences), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhenliang Lu (The University of Sydney), Qiang Tang (The University of Sydney), jing xu (Institute of Software, Chinese Academy of Sciences), Zhenfeng Zhang (Institute of Software, Chinese Academy of Sciences)

Read More

NSFuzz: Towards Efficient and State-Aware Network Service Fuzzing

Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting Yin (Tsinghua University), Chao Zhang (Tsinghua University)

Read More