Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Modern machine learning (ML) ecosystems offer a surging number of ML frameworks and code repositories that can greatly facilitate the development of ML models. Today, even ordinary data holders who are not ML experts can apply off-the-shelf codebase to build high-performance ML models on their data, many of which are sensitive in nature (e.g., clinical records).

In this work, we consider a malicious ML provider who supplies model-training code to the data holders, does not have access to the training process, and has only black-box query access to the resulting model. In this setting, we demonstrate a new form of membership inference attack that is strictly more powerful than prior art. Our attack empowers the adversary to reliably de-identify all the training samples (average >99% attack [email protected]% FPR), and the compromised models still maintain competitive performance as their uncorrupted counterparts (average <1% accuracy drop). Moreover, we show that the poisoned models can effectively disguise the amplified membership leakage under common membership privacy auditing, which can only be revealed by a set of secret samples known by the adversary. Overall, our study not only points to the worst-case membership privacy leakage, but also unveils a common pitfall underlying existing privacy auditing methods, which calls for future efforts to rethink the current practice of auditing membership privacy in machine learning models.

View More Papers

Five Word Password Composition Policy

Sirvan Almasi (Imperial College London), William J. Knottenbelt (Imperial College London)

Read More

Poster: FORESIGHT, A Unified Framework for Threat Modeling and...

ChaeYoung Kim (Seoul Women's University), Kyounggon Kim (Naif Arab University for Security Sciences)

Read More

Mixnets on a Tightrope: Quantifying the Leakage of Mix...

Sebastian Meiser, Debajyoti Das, Moritz Kirschte, Esfandiar Mohammadi, Aniket Kate

Read More

Speak Up, I’m Listening: Extracting Speech from Zero-Permission VR...

Derin Cayir (Florida International University), Reham Mohamed Aburas (American University of Sharjah), Riccardo Lazzeretti (Sapienza University of Rome), Marco Angelini (Link Campus University of Rome), Abbas Acar (Florida International University), Mauro Conti (University of Padua), Z. Berkay Celik (Purdue University), Selcuk Uluagac (Florida International University)

Read More