Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Modern machine learning (ML) ecosystems offer a surging number of ML frameworks and code repositories that can greatly facilitate the development of ML models. Today, even ordinary data holders who are not ML experts can apply off-the-shelf codebase to build high-performance ML models on their data, many of which are sensitive in nature (e.g., clinical records).

In this work, we consider a malicious ML provider who supplies model-training code to the data holders, does not have access to the training process, and has only black-box query access to the resulting model. In this setting, we demonstrate a new form of membership inference attack that is strictly more powerful than prior art. Our attack empowers the adversary to reliably de-identify all the training samples (average >99% attack [email protected]% FPR), and the compromised models still maintain competitive performance as their uncorrupted counterparts (average <1% accuracy drop). Moreover, we show that the poisoned models can effectively disguise the amplified membership leakage under common membership privacy auditing, which can only be revealed by a set of secret samples known by the adversary. Overall, our study not only points to the worst-case membership privacy leakage, but also unveils a common pitfall underlying existing privacy auditing methods, which calls for future efforts to rethink the current practice of auditing membership privacy in machine learning models.

View More Papers

NodeMedic-FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities

Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More

Revisiting EM-based Estimation for Locally Differentially Private Protocols

Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

Read More

Silence False Alarms: Identifying Anti-Reentrancy Patterns on Ethereum to...

Qiyang Song (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Heqing Huang (Institute of Information Engineering, Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Yuanbo Xie (Institute of Information…

Read More

The (Un)usual Suspects – Studying Reasons for Lacking Updates...

Maria Hellenthal (CISPA Helmholtz Center for Information Security), Lena Gotsche (CISPA Helmholtz Center for Information Security), Rafael Mrowczynski (CISPA Helmholtz Center for Information Security), Sarah Kugel (Saarland University), Michael Schilling (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More