Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Modern machine learning (ML) ecosystems offer a surging number of ML frameworks and code repositories that can greatly facilitate the development of ML models. Today, even ordinary data holders who are not ML experts can apply off-the-shelf codebase to build high-performance ML models on their data, many of which are sensitive in nature (e.g., clinical records).

In this work, we consider a malicious ML provider who supplies model-training code to the data holders, does not have access to the training process, and has only black-box query access to the resulting model. In this setting, we demonstrate a new form of membership inference attack that is strictly more powerful than prior art. Our attack empowers the adversary to reliably de-identify all the training samples (average >99% attack [email protected]% FPR), and the compromised models still maintain competitive performance as their uncorrupted counterparts (average <1% accuracy drop). Moreover, we show that the poisoned models can effectively disguise the amplified membership leakage under common membership privacy auditing, which can only be revealed by a set of secret samples known by the adversary. Overall, our study not only points to the worst-case membership privacy leakage, but also unveils a common pitfall underlying existing privacy auditing methods, which calls for future efforts to rethink the current practice of auditing membership privacy in machine learning models.

View More Papers

GAP-Diff: Protecting JPEG-Compressed Images from Diffusion-based Facial Customization

Haotian Zhu (Nanjing University of Science and Technology), Shuchao Pang (Nanjing University of Science and Technology), Zhigang Lu (Western Sydney University), Yongbin Zhou (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61)

Read More

ABElity: Attribute Based Encryption for Securing RIC Communication in...

K Sowjanya (Indian Institute of Technology Delhi), Rahul Saini (Eindhoven University of Technology), Dhiman Saha (Indian Institute of Technology Bhilai), Kishor Joshi (Eindhoven University of Technology), Madhurima Das (Indian Institute of Technology Delhi)

Read More

Decoupling Permission Management from Cryptography for Privacy-Preserving Systems

Ruben De Smet (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), Tom Godden (Department of Engineering Technology (INDI), Vrije Universiteit Brussel), Kris Steenhaut (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), An Braeken (Department of Engineering Technology (INDI), Vrije Universiteit Brussel)

Read More