Yibin Xu (University of Copenhagen), Jingyi Zheng (University of Copenhagen), Boris Düdder (University of Copenhagen), Tijs Slaats (University of Copenhagen), Yongluan Zhou (University of Copenhagen)

Sharding is a critical technique that enhances the scalability of blockchain technology. However, existing protocols often assume adversarial nodes in a general term without considering the different types of attacks, which limits transaction throughput at runtime because attacks on liveness could be mitigated. There have been attempts to increase transaction throughput by separately handling the attacks; however, they have security vulnerabilities. This paper introduces Reticulum, a novel sharding protocol that overcomes these limitations and achieves enhanced scalability in a blockchain network without security vulnerabilities.

Reticulum employs a two-phase design that dynamically adjusts transaction throughput based on runtime adversarial attacks on either or both liveness and safety. It consists of ‘control’ and ‘process’ shards in two layers corresponding to the two phases. Process shards are subsets of control shards, with each process shard expected to contain at least one honest node with high confidence. Conversely, control shards are expected to have a majority of honest nodes with high confidence. Reticulum leverages unanimous voting in the first phase to involve fewer nodes in accepting/rejecting a block, allowing more parallel process shards. The control shard finalizes the decision made in the first phase and serves as a lifeline to resolve disputes when they surface.

Experiments demonstrate that the unique design of Reticulum empowers high transaction throughput and robustness in the face of different types of attacks in the network, making it superior to existing sharding protocols for blockchain networks.

View More Papers

Evaluating Disassembly Ground Truth Through Dynamic Tracing

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Liu Zhuohao (National University of Singapore)

Read More

GraphGuard: Detecting and Counteracting Training Data Misuse in Graph...

Bang Wu (CSIRO's Data61/Monash University), He Zhang (Monash University), Xiangwen Yang (Monash University), Shuo Wang (CSIRO's Data61/Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Shirui Pan (Griffith University), Xingliang Yuan (Monash University)

Read More

Secure Control of Connected and Automated Vehicles Using Trust-Aware...

H M Sabbir Ahmad, Ehsan Sabouni, Akua Dickson (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos Cassandras, Wenchao Li (Boston University)

Read More

TextGuard: Provable Defense against Backdoor Attacks on Text Classification

Hengzhi Pei (UIUC), Jinyuan Jia (UIUC, Penn State), Wenbo Guo (UC Berkeley, Purdue University), Bo Li (UIUC), Dawn Song (UC Berkeley)

Read More