Nina Shamsi (Northeastern University), Kaeshav Chandrasekar, Yan Long, Christopher Limbach (University of Michigan), Keith Rebello (Boeing), Kevin Fu (Northeastern University)

Control or disablement of computer vision-assisted autonomous vehicles via acoustic interference is an open problem in vehicle cybersecurity research. This work explores a new threat model in this problem space: acoustic interference via high-speed, pulsed lasers to non-destructively affect drone sensors. Initial experiments verified the feasibility of laser-induced acoustic wave generation at resonant frequencies of MEMS gyroscope sensors. Acoustic waves generated by a lab-scale laser produced a 300-fold noise floor modification in commercial off-of-the-shelf (COTS) gyroscope sensor readings. Computer vision functionalities of drones often depend on such vulnerable sensors, and can be a target of this new threat model because of camera motion blurs caused by acoustic interference. The effect of laser-induced acoustics in object detection datasets was simulated by extracting blur kernels from drone images captured under different conditions of acoustic interference, including speaker-generated sound to emulate higher intensity lasers, and evaluated using state-of-theart object detection models. The results show an average of 41.1% decrease in mean average precision for YOLOv8 across two datasets, and suggest an inverse relationship between an object detection model’s mean average precision and acoustic intensity. Object detection models with at least 60M parameters appear more resilient against laser-induced acoustic interference. Initial characterizations of laser-induced acoustic interference reveal future potential threat models affecting sensors and downstream software systems of autonomous vehicles.

View More Papers

A Two-Layer Blockchain Sharding Protocol Leveraging Safety and Liveness...

Yibin Xu (University of Copenhagen), Jingyi Zheng (University of Copenhagen), Boris Düdder (University of Copenhagen), Tijs Slaats (University of Copenhagen), Yongluan Zhou (University of Copenhagen)

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More

SOCs lead AI adoption: Transitioning Lessons to the C-Suite

Eric Dull, Drew Walsh, Scott Riede (Deloitte and Touche)

Read More