Jairo Giraldo (University of Utah), Alvaro Cardenas (UC Santa Cruz), Murat Kantarcioglu (UT Dallas), Jonathan Katz (George Mason University)

Differential Privacy has emerged in the last decade as a powerful tool to protect sensitive information. Similarly, the last decade has seen a growing interest in adversarial classification, where an attacker knows a classifier is trying to detect anomalies and the adversary attempts to design examples meant to mislead this classification.

Differential privacy and adversarial classification have been studied separately in the past. In this paper, we study the problem of how a strategic attacker can leverage differential privacy to inject false data in a system, and then we propose countermeasures against these novel attacks. We show the impact of our attacks and defenses in a real-world traffic estimation system and in a smart metering system.

View More Papers

On the Resilience of Biometric Authentication Systems against Random...

Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

Read More

SymTCP: Eluding Stateful Deep Packet Inspection with Automated Discrepancy...

Zhongjie Wang (University of California, Riverside), Shitong Zhu (University of California, Riverside), Yue Cao (University of California, Riverside), Zhiyun Qian (University of California, Riverside), Chengyu Song (University of California, Riverside), Srikanth V. Krishnamurthy (University of California, Riverside), Kevin S. Chan (U.S. Army Research Lab), Tracy D. Braun (U.S. Army Research Lab)

Read More

Automated Cross-Platform Reverse Engineering of CAN Bus Commands From...

Haohuang Wen (The Ohio State University), Qingchuan Zhao (The Ohio State University), Qi Alfred Chen (University of California, Irvine), Zhiqiang Lin (The Ohio State University)

Read More