Jairo Giraldo (University of Utah), Alvaro Cardenas (UC Santa Cruz), Murat Kantarcioglu (UT Dallas), Jonathan Katz (George Mason University)

Differential Privacy has emerged in the last decade as a powerful tool to protect sensitive information. Similarly, the last decade has seen a growing interest in adversarial classification, where an attacker knows a classifier is trying to detect anomalies and the adversary attempts to design examples meant to mislead this classification.

Differential privacy and adversarial classification have been studied separately in the past. In this paper, we study the problem of how a strategic attacker can leverage differential privacy to inject false data in a system, and then we propose countermeasures against these novel attacks. We show the impact of our attacks and defenses in a real-world traffic estimation system and in a smart metering system.

View More Papers

FUSE: Finding File Upload Bugs via Penetration Testing

Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

Read More

Post-Quantum Authentication in TLS 1.3: A Performance Study

Dimitrios Sikeridis (The University of New Mexico), Panos Kampanakis (Cisco Systems), Michael Devetsikiotis (The University of New Mexico)

Read More

TKPERM: Cross-platform Permission Knowledge Transfer to Detect Overprivileged Third-party...

Faysal Hossain Shezan (University of Virginia), Kaiming Cheng (University of Virginia), Zhen Zhang (Johns Hopkins University), Yinzhi Cao (Johns Hopkins University), Yuan Tian (University of Virginia)

Read More

Measuring the Deployment of Network Censorship Filters at Global...

Ram Sundara Raman (University of Michigan), Adrian Stoll (University of Michigan), Jakub Dalek (Citizen Lab, University of Toronto), Reethika Ramesh (University of Michigan), Will Scott (Independent), Roya Ensafi (University of Michigan)

Read More