Kevin van Liebergen (IMDEA Software Institute), Gibran Gomez (IMDEA Software Institute), Srdjan Matic (IMDEA Software Institute), Juan Caballero (IMDEA Software Institute)

We present the first systematic study of database ransom(ware) attacks, a class of attacks where attackers scan for database servers, log in by leveraging the lack of authentication or weak credentials, drop the database contents, and demand a ransom to return the deleted data. We examine 23,736 ransom notes collected from 60,427 compromised database servers over three years, and set up database honeypots to obtain a first-hand view of current attacks. Database ransom(ware) attacks are prevalent with 6K newly infected servers in March 2024, a 60% increase over a year earlier. Our honeypots get infected in 14 hours since they are connected to the Internet. Weak authentication issues are two orders of magnitude more frequent on Elasticsearch servers compared to MySQL servers due to slow adoption of the latest Elasticsearch versions. To analyze who is behind database ransom(ware) attacks we implement a clustering approach that first identifies campaigns using the similarity of the ransom notes text. Then, it determines which campaigns are run by the same group by leveraging indicator reuse and information from the Bitcoin blockchain. For each group, it computes properties such as the number of compromised servers, the lifetime, the revenue, and the indicators used. Our approach identifies that the 60,427 database servers are victims of 91 campaigns run by 32 groups. It uncovers a dominant group responsible for 76% of the infected servers and 90% of the financial impact. We find links between the dominant group, a nation-state, and a previous attack on Git repositories.

View More Papers

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More

SongBsAb: A Dual Prevention Approach against Singing Voice Conversion...

Guangke Chen (Pengcheng Laboratory), Yedi Zhang (National University of Singapore), Fu Song (Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Science; Nanjing Institute of Software Technology), Ting Wang (Stony Brook University), Xiaoning Du (Monash University), Yang Liu (Nanyang Technological University)

Read More

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Mysticeti: Reaching the Latency Limits with Uncertified DAGs

Kushal Babel (Cornell Tech & IC3), Andrey Chursin (Mysten Labs), George Danezis (Mysten Labs & University College London (UCL)), Anastasios Kichidis (Mysten Labs), Lefteris Kokoris-Kogias (Mysten Labs & IST Austria), Arun Koshy (Mysten Labs), Alberto Sonnino (Mysten Labs & University College London (UCL)), Mingwei Tian (Mysten Labs)

Read More