Kevin van Liebergen (IMDEA Software Institute), Gibran Gomez (IMDEA Software Institute), Srdjan Matic (IMDEA Software Institute), Juan Caballero (IMDEA Software Institute)

We present the first systematic study of database ransom(ware) attacks, a class of attacks where attackers scan for database servers, log in by leveraging the lack of authentication or weak credentials, drop the database contents, and demand a ransom to return the deleted data. We examine 23,736 ransom notes collected from 60,427 compromised database servers over three years, and set up database honeypots to obtain a first-hand view of current attacks. Database ransom(ware) attacks are prevalent with 6K newly infected servers in March 2024, a 60% increase over a year earlier. Our honeypots get infected in 14 hours since they are connected to the Internet. Weak authentication issues are two orders of magnitude more frequent on Elasticsearch servers compared to MySQL servers due to slow adoption of the latest Elasticsearch versions. To analyze who is behind database ransom(ware) attacks we implement a clustering approach that first identifies campaigns using the similarity of the ransom notes text. Then, it determines which campaigns are run by the same group by leveraging indicator reuse and information from the Bitcoin blockchain. For each group, it computes properties such as the number of compromised servers, the lifetime, the revenue, and the indicators used. Our approach identifies that the 60,427 database servers are victims of 91 campaigns run by 32 groups. It uncovers a dominant group responsible for 76% of the infected servers and 90% of the financial impact. We find links between the dominant group, a nation-state, and a previous attack on Git repositories.

View More Papers

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

Black-box Membership Inference Attacks against Fine-tuned Diffusion Models

Yan Pang (University of Virginia), Tianhao Wang (University of Virginia)

Read More

IoT Software Updates: User Perspectives in the Context of...

S. P. Veed, S. M. Daftary, B. Singh, M. Rudra, S. Berhe (University of the Pacific), M. Maynard (Data Independence LLC) F. Khomh (Polytechnique Montreal)

Read More

Revisiting Physical-World Adversarial Attack on Traffic Sign Recognition: A...

Ningfei Wang (University of California, Irvine), Shaoyuan Xie (University of California, Irvine), Takami Sato (University of California, Irvine), Yunpeng Luo (University of California, Irvine), Kaidi Xu (Drexel University), Qi Alfred Chen (University of California, Irvine)

Read More