Imani N. Sherman (University of Florida), Jasmine D. Bowers (University of Florida), Keith McNamara Jr. (University of Florida), Juan E. Gilbert (University of Florida), Jaime Ruiz (University of Florida), Patrick Traynor (University of Florida)

Robocalls are inundating phone users. These automated calls allow for attackers to reach massive audiences with scams ranging from credential hijacking to unnecessary IT support in a largely untraceable fashion. In response, many applications have been developed to alert mobile phone users of incoming robocalls. However, how well these applications communicate risk with their users is not well understood. In this paper, we identify common real-time security indicators used in the most popular anti-robocall applications. Using focus groups and user testing, we first identify which of these indicators most effectively alert users of danger. We then demonstrate that the most powerful indicators can reduce the likelihood that users will answer such calls by as much as 43%. Unfortunately, our evaluation also shows that attackers can eliminate the gains provided by such indicators using a small amount of target-specific information (e.g., a known phone number). In so doing, we demonstrate that anti-robocall indicators could benefit from significantly increased attention from the research community.

View More Papers

Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari (University of Colorado Boulder), Pavol Černý (TU Wien), Ashutosh Trivedi (University of Colorado Boulder)

Read More

Precisely Characterizing Security Impact in a Flood of Patches...

Qiushi Wu (University of Minnesota), Yang He (University of Minnesota), Stephen McCamant (University of Minnesota), Kangjie Lu (University of Minnesota)

Read More

CDN Judo: Breaking the CDN DoS Protection with Itself

Run Guo (Tsinghua University), Weizhong Li (Tsinghua University), Baojun Liu (Tsinghua University), Shuang Hao (University of Texas at Dallas), Jia Zhang (Tsinghua University), Haixin Duan (Tsinghua University), Kaiwen Sheng (Tsinghua University), Jianjun Chen (ICSI), Ying Liu (Tsinghua University)

Read More

NoJITsu: Locking Down JavaScript Engines

Taemin Park (University of California, Irvine), Karel Dhondt (imec-DistriNet, KU Leuven), David Gens (University of California, Irvine), Yeoul Na (University of California, Irvine), Stijn Volckaert (imec-DistriNet, KU Leuven), Michael Franz (University of California, Irvine, USA)

Read More