Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

YouTube has become the second most popular website according to Alexa, and it represents an enticing platform for scammers to attract victims. Because of the computational difficulty of classifying multimedia, identifying scams on YouTube is more difficult than text-based media. As a consequence, the research community to-date has provided little insight into the prevalence, lifetime, and operational patterns of scammers on YouTube. In this short paper, we present a preliminary exploration of scam videos on YouTube. We begin by identifying 74 search queries likely to lead to scam videos based on the authors’ experience seeing scams during routine browsing. We then manually review and characterize the results to identify 668 scams in 3,700 videos. In a detailed analysis of our classifications and metadata, we find that these scam videos have a median lifetime of nearly nine months, and many rely on external websites for monetization. We also explore the potential of detecting scams from metadata alone, finding that metadata does not have enough predictive power to distinguish scams from legitimate videos. Our work demonstrates that scams are a real problem for YouTube users, motivating future work on this topic.

View More Papers

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More

Taking a Closer Look at the Alexa Skill Ecosystem

Christopher Lentzsch (Ruhr-Universität Bochum), Anupam Das (North Carolina State University)

Read More

WINNIE : Fuzzing Windows Applications with Harness Synthesis and...

Jinho Jung (Georgia Institute of Technology), Stephen Tong (Georgia Institute of Technology), Hong Hu (Pennsylvania State University), Jungwon Lim (Georgia Institute of Technology), Yonghwi Jin (Georgia Institute of Technology), Taesoo Kim (Georgia Institute of Technology)

Read More