Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

YouTube has become the second most popular website according to Alexa, and it represents an enticing platform for scammers to attract victims. Because of the computational difficulty of classifying multimedia, identifying scams on YouTube is more difficult than text-based media. As a consequence, the research community to-date has provided little insight into the prevalence, lifetime, and operational patterns of scammers on YouTube. In this short paper, we present a preliminary exploration of scam videos on YouTube. We begin by identifying 74 search queries likely to lead to scam videos based on the authors’ experience seeing scams during routine browsing. We then manually review and characterize the results to identify 668 scams in 3,700 videos. In a detailed analysis of our classifications and metadata, we find that these scam videos have a median lifetime of nearly nine months, and many rely on external websites for monetization. We also explore the potential of detecting scams from metadata alone, finding that metadata does not have enough predictive power to distinguish scams from legitimate videos. Our work demonstrates that scams are a real problem for YouTube users, motivating future work on this topic.

View More Papers

(Short) WIP: Deployability Improvement, Stealthiness User Study, and Safety...

Takami Sato, Junjie Shen, Ningfei Wang (UC Irvine), Yunhan Jia (ByteDance), Xue Lin (Northeastern University), and Qi Alfred Chen (UC Irvine)

Read More

PHOENIX: Device-Centric Cellular Network Protocol Monitoring using Runtime Verification

Mitziu Echeverria (The University of Iowa), Zeeshan Ahmed (The University of Iowa), Bincheng Wang (The University of Iowa), M. Fareed Arif (The University of Iowa), Syed Rafiul Hussain (Pennsylvania State University), Omar Chowdhury (The University of Iowa)

Read More

The Abuser Inside Apps: Finding the Culprit Committing Mobile...

Joongyum Kim (KAIST), Jung-hwan Park (KAIST), Sooel Son (KAIST)

Read More

EMMasker: EM Obfuscation Against Website Fingerprinting

Mohammed Aldeen, Sisheng Liang, Zhenkai Zhang, Linke Guo (Clemson University), Zheng Song (University of Michigan – Dearborn), and Long Cheng (Clemson University)

Read More