Elijah Bouma-Sims, Bradley Reaves (North Carolina State University)

YouTube has become the second most popular website according to Alexa, and it represents an enticing platform for scammers to attract victims. Because of the computational difficulty of classifying multimedia, identifying scams on YouTube is more difficult than text-based media. As a consequence, the research community to-date has provided little insight into the prevalence, lifetime, and operational patterns of scammers on YouTube. In this short paper, we present a preliminary exploration of scam videos on YouTube. We begin by identifying 74 search queries likely to lead to scam videos based on the authors’ experience seeing scams during routine browsing. We then manually review and characterize the results to identify 668 scams in 3,700 videos. In a detailed analysis of our classifications and metadata, we find that these scam videos have a median lifetime of nearly nine months, and many rely on external websites for monetization. We also explore the potential of detecting scams from metadata alone, finding that metadata does not have enough predictive power to distinguish scams from legitimate videos. Our work demonstrates that scams are a real problem for YouTube users, motivating future work on this topic.

View More Papers

Hey Alexa, is this Skill Safe?: Taking a Closer...

Christopher Lentzsch (Ruhr-Universität Bochum), Sheel Jayesh Shah (North Carolina State University), Benjamin Andow (Google), Martin Degeling (Ruhr-Universität Bochum), Anupam Das (North Carolina State University), William Enck (North Carolina State University)

Read More

Demo #6: Impact of Stealthy Attacks on Autonomous Robotic...

Pritam Dash, Mehdi Karimibiuki, and Karthik Pattabiraman (University of British Columbia)

Read More

Work-in-Progress: Uncovering Dark Patterns: A Longitudinal Study of Cookie...

Zihan Qu (Johns Hopkins University), Xinyi Qu (University College London), Xin Shen, Zhen Liang, and Jianjia Yu (Johns Hopkins University)

Read More

Model-Agnostic Defense for Lane Detection against Adversarial Attack

Henry Xu, An Ju, and David Wagner (UC Berkeley) Baidu Security Auto-Driving Security Award Winner ($1000 cash prize)!

Read More