Yijun Yang (The Chinese University of Hong Kong), Ruiyuan Gao (The Chinese University of Hong Kong), Yu Li (The Chinese University of Hong Kong), Qiuxia Lai (Communication University of China), Qiang Xu (The Chinese University of Hong Kong)

Adversarial examples (AEs) pose severe threats to the applications of deep neural networks (DNNs) to safety-critical domains (e.g., autonomous driving and healthcare analytics). While there has been a vast body of research to defend against AEs, to the best of our knowledge, they all suffer from some weaknesses, e.g., defending against only a subset of AEs or causing a relatively high accuracy loss for legitimate inputs. Moreover, most of the existing solutions cannot defend against adaptive attacks, wherein attackers are knowledgeable about the defense mechanisms and craft AEs accordingly.

In this paper, we propose a novel AE detection framework based on the very nature of AEs, i.e., their semantic information is inconsistent with the discriminative features extracted by the target DNN model. To be specific, the proposed solution, namely ContraNet, models such contradiction by first taking both the input and the inference result to a generator to obtain a synthetic output and then comparing it against the original input. For legitimate inputs that are correctly inferred, the synthetic output tries to reconstruct the input. On the contrary, for AEs, instead of reconstructing the input, the synthetic output would be created to conform to the wrong label whenever possible. Consequently, by measuring the distance between the input and the synthetic output with metric learning, we can differentiate AEs from legitimate inputs. We perform comprehensive evaluations under various types of AE attack scenarios, and experimental results show that ContraNet outperforms existing solutions by a large margin, especially for adaptive attacks. Moreover, further analysis shows that successful AEs that can bypass ContraNet tend to have much-weakened adversarial semantics. We have also shown that ContraNet can be easily combined with adversarial training techniques to achieve more outstanding AE defense capabilities.

View More Papers

Fine-Grained Coverage-Based Fuzzing

Bernard Nongpoh (Université Paris Saclay), Marwan Nour (Université Paris Saclay), Michaël Marcozzi (Université Paris Saclay), Sébastien Bardin (Université Paris Saclay)

Read More

A Framework for Consistent and Repeatable Controller Area Network...

Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at...

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn...

Read More

Chhoyhopper: A Moving Target Defense with IPv6

A S M Rizvi (University of Southern California/Information Sciences Institute) and John Heidemann (University of Southern California/Information Sciences Institute)

Read More