A leading approach to enhancing the performance and scalability of permissionless blockchains is to use the payment channel, which allows two users to perform off-chain payments with almost unlimited frequency. By linking payment channels together to form a payment channel network, users connected by a path of channels can perform off-chain payments rapidly. However, payment channels risk encountering fund depletion, which threatens the availability of both the payment channel and network. The most recent method needs a cycle-based channel rebalancing procedure, which requires a fair leader and users with rebalancing demands forming directed cycles in the network. Therefore, its large-scale applications are restricted.

In this work, we introduce Shaduf, a novel non-cycle off-chain rebalancing protocol that offers a new solution for users to shift coins between channels directly without relying on the cycle setting. Shaduf can be applied to more general rebalancing scenarios. We provide the details of Shaduf and formally prove its security under the Universal Composability framework. Our prototype demonstrates its feasibility and the experimental evaluation shows that Shaduf enhances the Lighting Network performance in payment success ratio and volume. Moreover, our protocol prominently reduces users’ deposits in channels while maintaining the same amount of payments.

View More Papers

Demo #4: Recovering Autonomous Robotic Vehicles from Physical Attacks

Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Read More

NSFuzz: Towards Efficient and State-Aware Network Service Fuzzing

Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting...

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn...

Read More

DrawnApart: A Deep-Learning Enhanced GPU Fingerprinting Technique

Naif Mehanna (University of Lille, CNRS, Inria), Tomer Laor (Ben-Gurion University of the Negev)

Read More