Peng Wang (Indiana University Bloomington), Zilong Lin (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

A new type of underground illicit drug promotion, illicit drug business listings on local search services (e.g., local knowledge panel, map search, voice search), is increasingly being utilized by miscreants to advertise and sell controlled substances on the Internet. Miscreants exploit the problematic upstream local data brokers featuring loose control on data quality to post listings that promote illicit drug business. Such a promotion, in turn, pollutes the major downstream search providers’ knowledge bases and further reaches a large audience through web, map, and voice searches. To the best of our knowledge, little has been done so far to understand this new illicit promotion in terms of its scope, impact, and techniques, not to mention any effort to identify such illicit drug business listings on a large scale. In this paper, we report the first measurement study of the illicit drug business listings on local search services. Our findings have brought to light the vulnerable and less regulated local business listing ecosystem and the pervasiveness of such illicit activities, as well as the impact on local search audience.

View More Papers

insecure:// Vulnerability Analysis of URI Scheme Handling in Android...

Abdulla Aldoseri (University of Birmingham) and David Oswald (University of Birmingham)

Read More

Shaduf: Non-Cycle Payment Channel Rebalancing

Zhonghui Ge (Shanghai Jiao Tong University), Yi Zhang (Shanghai Jiao Tong University), Yu Long (Shanghai Jiao Tong University), Dawu Gu (Shanghai Jiao Tong University)

Read More

PoF: Proof-of-Following for Vehicle Platoons

Ziqi Xu (University of Arizona), Jingcheng Li (University of Arizona), Yanjun Pan (University of Arizona), Loukas Lazos (University of Arizona, Tucson), Ming Li (University of Arizona, Tucson), Nirnimesh Ghose (University of Nebraska–Lincoln)

Read More

MIRROR: Model Inversion for Deep LearningNetwork with High Fidelity

Shengwei An (Purdue University), Guanhong Tao (Purdue University), Qiuling Xu (Purdue University), Yingqi Liu (Purdue University), Guangyu Shen (Purdue University); Yuan Yao (Nanjing University), Jingwei Xu (Nanjing University), Xiangyu Zhang (Purdue University)

Read More