Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting Yin (Tsinghua University), Chao Zhang (Tsinghua University)

As the essential component responsible for communication, network services are security-critical, and it is vital to find vulnerabilities in them. Fuzzing is currently one of the most popular software vulnerability discovery techniques, widely adopted due to its high efficiency and low false positives. However, existing coverage-guided fuzzers mainly aim at stateless local applications, leaving stateful network services underexplored. Recently, some fuzzers targeting network services have been proposed but have certain limitations, e.g., insufficient or inaccurate state representation and low testing efficiency.

In this paper, we propose a new fuzzing solution NSFuzz for stateful network services. Specifically, we studied typical implementations of network service programs and figured out how they represent states and interact with clients, and accordingly propose (1) a program variable-based state representation scheme and (2) an efficient interaction synchronization mechanism to improve efficiency. We have implemented a prototype of NSFuzz, which uses static analysis to identify network event loops and extract state variables, then achieves fast I/O synchronization and efficient s t ate-aware fuzzing via lightweight compile-time instrumentation. The preliminary evaluation results show that, compared with state-of-the-art network service fuzzers AFLNET and STATEAFL, our solution NSFuzz could infer a more accurate state model during fuzzing and improve the testing throughput by up to 50x and the coverage by up to 20%.

View More Papers

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao (University at Buffalo) and Hongxin Hu (University at Buffalo)

Read More

MobFuzz: Adaptive Multi-objective Optimization in Gray-box Fuzzing

Gen Zhang (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Tai Yue (National University of Defense Technology), Xiangdong Kong (National University of Defense Technology), Shan Huang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

The Taming of the Stack: Isolating Stack Data from...

Kaiming Huang (Penn State University), Yongzhe Huang (Penn State University), Mathias Payer (EPFL), Zhiyun Qian (UC Riverside), Jack Sampson (Penn State University), Gang Tan (Penn State University), Trent Jaeger (Penn State University)

Read More

Building Embedded Systems Like It’s 1996

Ruotong Yu (Stevens Institute of Technology, University of Utah), Francesca Del Nin (University of Padua), Yuchen Zhang (Stevens Institute of Technology), Shan Huang (Stevens Institute of Technology), Pallavi Kaliyar (Norwegian University of Science and Technology), Sarah Zakto (Cyber Independent Testing Lab), Mauro Conti (University of Padua, Delft University of Technology), Georgios Portokalidis (Stevens Institute of…

Read More