Shisong Qin (Tsinghua University), Fan Hu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Bodong Zhao (Tsinghua University), Tingting Yin (Tsinghua University), Chao Zhang (Tsinghua University)

As the essential component responsible for communication, network services are security-critical, and it is vital to find vulnerabilities in them. Fuzzing is currently one of the most popular software vulnerability discovery techniques, widely adopted due to its high efficiency and low false positives. However, existing coverage-guided fuzzers mainly aim at stateless local applications, leaving stateful network services underexplored. Recently, some fuzzers targeting network services have been proposed but have certain limitations, e.g., insufficient or inaccurate state representation and low testing efficiency.

In this paper, we propose a new fuzzing solution NSFuzz for stateful network services. Specifically, we studied typical implementations of network service programs and figured out how they represent states and interact with clients, and accordingly propose (1) a program variable-based state representation scheme and (2) an efficient interaction synchronization mechanism to improve efficiency. We have implemented a prototype of NSFuzz, which uses static analysis to identify network event loops and extract state variables, then achieves fast I/O synchronization and efficient s t ate-aware fuzzing via lightweight compile-time instrumentation. The preliminary evaluation results show that, compared with state-of-the-art network service fuzzers AFLNET and STATEAFL, our solution NSFuzz could infer a more accurate state model during fuzzing and improve the testing throughput by up to 50x and the coverage by up to 20%.

View More Papers

FirmWire: Transparent Dynamic Analysis for Cellular Baseband Firmware

Grant Hernandez (University of Florida), Marius Muench (Vrije Universiteit Amsterdam), Dominik Maier (TU Berlin), Alyssa Milburn (Vrije Universiteit Amsterdam), Shinjo Park (TU Berlin), Tobias Scharnowski (Ruhr-University Bochum), Tyler Tucker (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

Fooling the Eyes of Autonomous Vehicles: Robust Physical Adversarial...

Wei Jia (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Zhaojun Lu (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Haichun Zhang (Huazhong University of Science and Technology), Zhenglin Liu (Huazhong University of Science and Technology), Jie Wang (Shenzhen Kaiyuan Internet Security Co., Ltd), Gang Qu (University…

Read More

Get a Model! Model Hijacking Attack Against Machine Learning...

Ahmed Salem (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More

GhostTalk: Interactive Attack on Smartphone Voice System Through Power...

Yuanda Wang (Michigan State University), Hanqing Guo (Michigan State University), Qiben Yan (Michigan State University)

Read More