Alireza Mohammadi (University of Michigan-Dearborn), Hafiz Malik (University of Michigan-Dearborn) and Masoud Abbaszadeh (GE Global Research)

Recent automotive hacking incidences have demonstrated that when an adversary manages to gain access to a safety-critical CAN, severe safety implications will ensue. Under such threats, this paper explores the capabilities of an adversary who is interested in engaging the car brakes at full speed and would like to cause wheel lockup conditions leading to catastrophic road injuries. This paper shows that the physical capabilities of a CAN attacker can be studied through the lens of closed-loop attack policy design. In particular, it is demonstrated that the adversary can cause wheel lockups by means of closed-loop attack policies for commanding the frictional brake actuators under a limited knowledge of the tire-road interaction characteristics. The effectiveness of the proposed wheel lockup attack policy is shown via numerical simulations under different road conditions.

View More Papers

An In-depth Analysis of Duplicated Linux Kernel Bug Reports

Dongliang Mu (Huazhong University of Science and Technology), Yuhang Wu (Pennsylvania State University), Yueqi Chen (Pennsylvania State University), Zhenpeng Lin (Pennsylvania State University), Chensheng Yu (George Washington University), Xinyu Xing (Pennsylvania State University), Gang Wang (University of Illinois at Urbana-Champaign)

Read More

Cross-Language Attacks

Samuel Mergendahl (MIT Lincoln Laboratory), Nathan Burow (MIT Lincoln Laboratory), Hamed Okhravi (MIT Lincoln Laboratory)

Read More

CANCloak: Deceiving Two ECUs with One Frame

Li Yue, Zheming Li, Tingting Yin, and Chao Zhang (Tsinghua University)

Read More

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More