Vincent Drury (IT-Security Research Group, RWTH Aachen University), Rene Roepke (Learning Technologies Research Group, RWTH Aachen University), Ulrik Schroeder (Learning Technologies Research Group, RWTH Aachen University), Ulrike Meyer (IT-Security Research Group, RWTH Aachen University)

Anti-phishing learning games are a promising approach to educate the general population about phishing, as they offer a scalable, motivational, and engaging environment for active learning. Existing games have been criticized for their limited game mechanics, which mostly require binary decisions to advance in the games, and for failing to consider the users’ familiarity with online services presented in the game. In this paper, we present the evaluation of two novel game prototypes that incorporate more complex game mechanics. The first game requires the classification of URLs into several different categories, thus giving additional insights into the player’s decision, while the second game addresses a different cognitive process by requiring the creation of new URLs. We compare the games with each other and with a baseline game which uses binary decisions similar to existing games. A user study with 133 participants shows, that while all three games lead to performance increases, none of the proposed game mechanics offer significant improvements over the baseline. However, we show that the analysis of the new games offers valuable insights into the players’ behavior and problems while playing the games, in particular with regards to different categories of phishing URLs. Furthermore, the user study shows that the participants were significantly better in classifying URLs of services they know than those they do not know. These results indicate, that the distinction between known and unknown services in phishing tests is important to gain a better understanding of the test results, and should be considered when designing and reproducing studies.

View More Papers

Demo: A Simulator for Cooperative and Automated Driving Security

Mohammed Lamine Bouchouia (Telecom Paris - Institut Polytechnique de Paris), Jean-Philippe Monteuuis (Qualcomm), Houda Labiod (Telecom Paris - Institut Polytechnique de Paris), Ons Jelassi, Wafa Ben Jaballah (Thales) and Jonathan Petit (Telecom Paris - Institut Polytechnique de Paris)

Read More

PoF: Proof-of-Following for Vehicle Platoons

Ziqi Xu (University of Arizona), Jingcheng Li (University of Arizona), Yanjun Pan (University of Arizona), Loukas Lazos (University of Arizona, Tucson), Ming Li (University of Arizona, Tucson), Nirnimesh Ghose (University of Nebraska–Lincoln)

Read More

ATTEQ-NN: Attention-based QoE-aware Evasive Backdoor Attacks

Xueluan Gong (Wuhan University), Yanjiao Chen (Zhejiang University), Jianshuo Dong (Wuhan University), Qian Wang (Wuhan University)

Read More