Peng Xu (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences), Yanhao Wang (QI-ANXIN Technology Research Institute), Hong Hu (Pennsylvania State University), Purui Su (TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences)

Scripting languages like JavaScript are being integrated into commercial software to support easy file modification. For example, Adobe Acrobat accepts JavaScript to dynamically manipulate PDF files. To bridge the gap between the high-level scripts and the low-level languages (like C/C++) used to implement the software, a binding layer is necessary to transfer data and transform representations. However, due to the complexity of two sides, the binding code is prone to inconsistent semantics and security holes, which lead to severe vulnerabilities. Existing efforts for testing binding code merely focus on the script side, and thus miss bugs that require special program native inputs.

In this paper, we propose cooperative mutation, which modifies both the script code and the program native input to trigger bugs in binding code. Our insight is that many bugs are due to the interplay between the program initial state and the dynamic operations, which can only be triggered through two-dimensional mutations. We develop three novel techniques to enable practical cooperative mutation on popular scripting languages: we first cluster objects into semantics similar classes to reduce the mutation space of native inputs; then, we statistically infer the relationship between script code and object classes based on a large number of executions; at last, we use the inferred relationship to select proper objects and related script code for targeted mutation. We applied our tool, COOPER, on three popular systems that integrate scripting languages, including Adobe Acrobat, Foxit Reader and Microsoft Word. COOPER successfully found 134 previously unknown bugs. We have reported all of them to the developers. At the time of paper publishing, 59 bugs have been fixed and 33 of them are assigned CVE numbers. We are awarded totally 22K dollars bounty for 17 out of all reported bugs.

View More Papers

On Utility and Privacy in Synthetic Genomic Data

Bristena Oprisanu (UCL), Georgi Ganev (UCL & Hazy), Emiliano De Cristofaro (UCL)

Read More

SoK: A Proposal for Incorporating Gamified Cybersecurity Awareness in...

June De La Cruz (INSPIRIT Lab, University of Denver), Sanchari Das (INSPIRIT Lab, University of Denver)

Read More

Semantic-Informed Driver Fuzzing Without Both the Hardware Devices and...

Wenjia Zhao (Xi'an Jiaotong University and University of Minnesota), Kangjie Lu (University of Minnesota), Qiushi Wu (University of Minnesota), Yong Qi (Xi'an Jiaotong University)

Read More

A Framework for Consistent and Repeatable Controller Area Network...

Paul Agbaje (University of Texas at Arlington), Afia Anjum (University of Texas at Arlington), Arkajyoti Mitra (University of Texas at Arlington), Gedare Bloom (University of Colorado Colorado Springs) and Habeeb Olufowobi (University of Texas at Arlington)

Read More