Abdullah Zubair Mohammed (Virginia Tech), Yanmao Man (University of Arizona), Ryan Gerdes (Virginia Tech), Ming Li (University of Arizona) and Z. Berkay Celik (Purdue University)

The Controller Area Network (CAN) bus standard is the most common in-vehicle network that provides communication between Electronic Control Units (ECUs). CAN messages lack authentication and data integrity protection mechanisms and hence are vulnerable to attacks, such as impersonation and data injection, at the digital level. The physical layer of the bus allows for a one-way change of a given bit to accommodate prioritization; viz. a recessive bit (1) may be changed to a dominant one (0). In this paper, we propose a physical-layer data manipulation attack wherein multiple compromised ECUs collude to cause 0→1 (i.e., dominant to recessive) bit-flips, allowing for arbitrary bit-flips in transmitted messages. The attack is carried out by inducing transient voltages in the CAN bus that are heightened due to the parasitic reactance of the bus and non-ideal properties of the line drivers. Simulation results indicate that, with more than eight compromised ECUs, an attacker can induce a sufficient voltage drop to cause dominant bits to be flipped to recessive ones.

View More Papers

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

Local and Central Differential Privacy for Robustness and Privacy...

Mohammad Naseri (University College London), Jamie Hayes (DeepMind), Emiliano De Cristofaro (University College London & Alan Turing Institute)

Read More

PoF: Proof-of-Following for Vehicle Platoons

Ziqi Xu (University of Arizona), Jingcheng Li (University of Arizona), Yanjun Pan (University of Arizona), Loukas Lazos (University of Arizona, Tucson), Ming Li (University of Arizona, Tucson), Nirnimesh Ghose (University of Nebraska–Lincoln)

Read More

DRIVETRUTH: Automated Autonomous Driving Dataset Generation for Security Applications

Raymond Muller (Purdue University), Yanmao Man (University of Arizona), Z. Berkay Celik (Purdue University), Ming Li (University of Arizona) and Ryan Gerdes (Virginia Tech)

Read More