Safety and security play critical roles for the success of Autonomous Driving (AD) systems. Since AD systems heavily rely on AI components, the safety and security research of such components has also received great attention in recent years. While it is widely recognized that AI component-level (mis)behavior does not necessarily lead to AD system-level impacts, most of existing work still only adopts component-level evaluation. To fill such critical scientific methodology-level gap from component-level to real system-level impact, a system-driven evaluation platform jointly constructed by the community could be the solution. In this paper, we present PASS (Platform for Auto-driving Safety and Security), a system-driven evaluation prototype based on simulation. By sharing our platform building concept and preliminary efforts, we hope to call on the community to build a uniform and extensible platform to make AI safety and security work sufficiently meaningful at the system level.

View More Papers

Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice

Bingyong Guo (Institute of Software, Chinese Academy of Sciences), Yuan Lu (Institute of Software Chinese Academy of Sciences), Zhenliang Lu...

Read More

Let’s Authenticate: Automated Certificates for User Authentication

James Conners (Brigham Young University), Corey Devenport (Brigham Young University), Stephen Derbidge (Brigham Young University), Natalie Farnsworth (Brigham Young University),...

Read More

Demo #10: Hijacking Connected Vehicle Alexa Skills

Wenbo Ding (University at Buffalo), Long Cheng (Clemson University), Xianghang Mi (University of Science and Technology of China), Ziming Zhao...

Read More

Binary Search in Secure Computation

Marina Blanton (University at Buffalo (SUNY)), Chen Yuan (University at Buffalo (SUNY))

Read More