Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Robotic Vehicles (RV) rely extensively on sensor inputs to operate autonomously. Physical attacks such as sensor tampering and spoofing feed erroneous sensor measurements to deviate RVs from their course and result in mission failures. We present PID-Piper , a novel framework for automatically recovering RVs from physical attacks. We use machine learning (ML) to design an attack resilient FeedForward Controller (FFC), which runs in tandem with the RV’s primary controller and monitors it. Under attacks, the FFC takes over from the RV’s primary controller to recover the RV, and allows the RV to complete its mission successfully. Our evaluation on 6 RV systems including 3 real RVs shows that PID-Piper allows RVs to complete their missions successfully despite attacks in 83% of the cases.

View More Papers

(Short) Fooling Perception via Location: A Case of Region-of-Interest...

Kanglan Tang, Junjie Shen, and Qi Alfred Chen (UC Irvine)

Read More

DRAWN APART: A Device Identification Technique based on Remote...

Tomer Laor (Ben-Gurion Univ. of the Negev), Naif Mehanna (Univ. Lille, CNRS, Inria), Antonin Durey (Univ. Lille, CNRS, Inria), Vitaly Dyadyuk (Ben-Gurion Univ. of the Negev), Pierre Laperdrix (Univ. Lille, CNRS, Inria), Clémentine Maurice (Univ. Lille, CNRS, Inria), Yossi Oren (Ben-Gurion Univ. of the Negev), Romain Rouvoy (Univ. Lille, CNRS, Inria / IUF), Walter Rudametkin…

Read More

What the Fork? Finding and Analyzing Malware in GitHub...

Alan Cao (New York University) and Brendan Dolan-Gavitt (New York University)

Read More

Detecting Obfuscated Function Clones in Binaries using Machine Learning

Michael Pucher (University of Vienna), Christian Kudera (SBA Research), Georg Merzdovnik (SBA Research)

Read More