Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Robotic Vehicles (RV) rely extensively on sensor inputs to operate autonomously. Physical attacks such as sensor tampering and spoofing feed erroneous sensor measurements to deviate RVs from their course and result in mission failures. We present PID-Piper , a novel framework for automatically recovering RVs from physical attacks. We use machine learning (ML) to design an attack resilient FeedForward Controller (FFC), which runs in tandem with the RV’s primary controller and monitors it. Under attacks, the FFC takes over from the RV’s primary controller to recover the RV, and allows the RV to complete its mission successfully. Our evaluation on 6 RV systems including 3 real RVs shows that PID-Piper allows RVs to complete their missions successfully despite attacks in 83% of the cases.

View More Papers

First, Fuzz the Mutants

Alex Groce (Northern Arizona Univerisity), Goutamkumar Kalburgi (Northern Arizona Univerisity), Claire Le Goues (Carnegie Mellon University), Kush Jain (Carnegie Mellon University), Rahul Gopinath (Saarland University)

Read More

PickMail: A Serious Game for Email Phishing Awareness Training

Gokul CJ (TCS Research, Tata Consultancy Services Ltd., Pune), Vijayanand Banahatti (TCS Research, Tata Consultancy Services Ltd., Pune), Sachin Lodha (TCS Research, Tata Consultancy Services Ltd., Pune)

Read More

Low-risk Privacy-preserving Electric Vehicle Charging with Payments

Andreas Unterweger, Fabian Knirsch, Clemens Brunner and Dominik Engel (Center for Secure Energy Informatics, Salzburg University of Applied Sciences, Puch bei Hallein, Austria)

Read More

GPSKey: GPS based Secret Key Establishment for Intra-Vehicle Environment

Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

Read More