Pritam Dash (University of British Columbia) and Karthik Pattabiraman (University of British Columbia)

Robotic Vehicles (RV) rely extensively on sensor inputs to operate autonomously. Physical attacks such as sensor tampering and spoofing feed erroneous sensor measurements to deviate RVs from their course and result in mission failures. We present PID-Piper , a novel framework for automatically recovering RVs from physical attacks. We use machine learning (ML) to design an attack resilient FeedForward Controller (FFC), which runs in tandem with the RV’s primary controller and monitors it. Under attacks, the FFC takes over from the RV’s primary controller to recover the RV, and allows the RV to complete its mission successfully. Our evaluation on 6 RV systems including 3 real RVs shows that PID-Piper allows RVs to complete their missions successfully despite attacks in 83% of the cases.

View More Papers

GPSKey: GPS based Secret Key Establishment for Intra-Vehicle Environment

Edwin Yang (University of Oklahoma) and Song Fang (University of Oklahoma)

Read More

Denial-of-Service Attacks on C-V2X Networks

Natasa Trkulja, David Starobinski (Boston University), and Randall Berry (Northwestern University)

Read More

Tetrad: Actively Secure 4PC for Secure Training and Inference

Nishat Koti (IISc Bangalore), Arpita Patra (IISc Bangalore), Rahul Rachuri (Aarhus University, Denmark), Ajith Suresh (IISc, Bangalore)

Read More

Testability Tarpits: the Impact of Code Patterns on the...

Feras Al Kassar (SAP Security Research), Giulia Clerici (SAP Security Research), Luca Compagna (SAP Security Research), Davide Balzarotti (EURECOM), Fabian Yamaguchi (ShiftLeft Inc)

Read More