Minkyu Jung (KAIST), Soomin Kim (KAIST), HyungSeok Han (KAIST), Jaeseung Choi (KAIST), Sang Kil Cha (KAIST)

Current binary analysis research focuses mainly on the back-end, but not on the front-end. However, we note that there are several key design points in the front-end that can greatly improve the efficiency of binary analyses. To demonstrate our idea, we design and implement B2R2, a new binary analysis platform that is fast with regard to lifting binary code and evaluating the corresponding IR. Our platform is written purely in F#, a functional programming language, without any external dependencies. Thus, it naturally supports pure parallelism. B2R2’s IR embeds metadata in its language for speeding up dataflow analyses, and it is designed to be efficient for evaluation. Therefore, any binary analysis technique can benefit from our IR design. We discuss our design decisions to build an efficient binary analysis front-end, and summarize lessons learned. We also make our source code public on GitHub.

View More Papers

Unlocking the Potential of Domain Aware Binary Analysis in...

Dr. Zhiqiang Lin (Distinguished Professor of Engineering at The Ohio State University)

Read More

icLibFuzzer: Isolated-context libFuzzer for Improving Fuzzer Comparability

Yu-Chuan Liang, Hsu-Chun Hsiao (National Taiwan University)

Read More

Investigating Graph Embedding Neural Networks with Unsupervised Features Extraction...

Luca Massarelli (Sapienza University of Rome), Giuseppe A. Di Luna (CINI - National Laboratory of Cybersecurity), Fabio Petroni (Independent Researcher), Leonardo Querzoni (Sapienza University of Rome), Roberto Baldoni (Italian Presidency of Ministry Council)

Read More

Short Paper: Declarative Demand-Driven Reverse Engineering

Yihao Sun, Jeffrey Ching, Kristopher Micinski (Department of Electical Engineering and Computer Science, Syracuse University)

Read More