Jared Chandler (Tufts University)

Reverse engineering message formats from static network traces is a difficult and time consuming security task, critical for a variety of purposes: bug-finding via fuzz testing, automatic exploit generation, understanding the communications of hostile systems, and recovering specifications that are proprietary or have been lost. In this talk we describe our experiences evaluating BinaryInferno, a tool for automatically reverse engineering binary message formats from network traces. We discuss considerations for selecting protocols to evaluate, determining message format ground truth, and assembling representative datasets. Two issues we examine are the availability of real-world captures for malware protocols, and the need to validate that individual protocol messages actually conform to their ground truth specifications. We detail the engineering aspects of comparing BinaryInferno against related tools, the issues which arose, and how we address them. We examine different evaluation metrics and their tradeoffs as related to uncovering unknown message formats. We discuss how we handled the different representations of message format produced by each related tool. Finally, we conclude with a set of recommendations for future experiments involving protocol reverse engineering.

Speaker’s Biography

Jared Chandler is a PhD candidate studying Computer Science at Tufts University. His research focuses on computer security with an emphasis on automatic methods to reverse engineer unknown binary protocols, human computer interaction, and cyber deception.

View More Papers

BlockScope: Detecting and Investigating Propagated Vulnerabilities in Forked Blockchain...

Xiao Yi (The Chinese University of Hong Kong), Yuzhou Fang (The Chinese University of Hong Kong), Daoyuan Wu (The Chinese University of Hong Kong), Lingxiao Jiang (Singapore Management University)

Read More

Machine Unlearning of Features and Labels

Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Read More

Access Your Tesla without Your Awareness: Compromising Keyless Entry...

Xinyi Xie (Shanghai Fudan Microelectronics Group Co., Ltd.), Kun Jiang (Shanghai Fudan Microelectronics Group Co., Ltd.), Rui Dai (Shanghai Fudan Microelectronics Group Co., Ltd.), Jun Lu (Shanghai Fudan Microelectronics Group Co., Ltd.), Lihui Wang (Shanghai Fudan Microelectronics Group Co., Ltd.), Qing Li (State Key Laboratory of ASIC & System, Fudan University), Jun Yu (State Key…

Read More

WIP: The Feasibility of High-performance Message Authentication in Automotive...

Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), Randy Marchany (Virginia Tech), J. Scot Ransbottom (Virginia Tech)

Read More