Florian Lachner, Minzhe Yuan Chen Cheng, Theodore Olsauskas-Warren (Google)

Online behavioral advertising is a double-edged sword. While relevant display ads are generally considered useful, opaque tracking based on third-party cookies has reached unfettered sprawl and is deemed to be privacy-intrusive. However, existing ways to preserve privacy do not sufficiently balance the needs of both users and the ecosystem. In this work, we evaluate alternative browser controls. We leverage the idea of inferring interests on users’ devices and designed novel browser controls to manage these interests. Through a mixed method approach, we studied how users feel about this approach. First, we conducted pilot interviews with 9 participants to test two design directions. Second, we ran a survey with 2,552 respondents to measure how our final design compares with current cookie settings. Respondents reported a significantly higher level of perceived privacy and feeling of control when introduced to the concept of locally inferred interests with an option for removal.

View More Papers

VulHawk: Cross-architecture Vulnerability Detection with Entropy-based Binary Code Search

Zhenhao Luo (College of Computer, National University of Defense Technology), Pengfei Wang (College of Computer, National University of Defense Technology), Baosheng Wang (College of Computer, National University of Defense Technology), Yong Tang (College of Computer, National University of Defense Technology), Wei Xie (College of Computer, National University of Defense Technology), Xu Zhou (College of Computer,…

Read More

Security When it is Welcome: Exploring Device Purchase as...

Simon Parkin (University College London); Elissa M. Redmiles (University of Maryland); Lynne Coventry (Northumbria University); M. Angela Sasse (Ruhr University Bochum and University College London)

Read More

AdvCAPTCHA: Creating Usable and Secure Audio CAPTCHA with Adversarial...

Hao-Ping (Hank) Lee (Carnegie Mellon University), Wei-Lun Kao (National Taiwan University), Hung-Jui Wang (National Taiwan University), Ruei-Che Chang (University of Michigan), Yi-Hao Peng (Carnegie Mellon University), Fu-Yin Cherng (National Chung Cheng University), Shang-Tse Chen (National Taiwan University)

Read More

Replication: A Study on How Users (Don’t) Use Password...

Pithayuth Charnsethikul (University of Southern California), Anushka Fattepurkar (University of Southern California), Dipsy Desai (University of Southern California), Gale Lucas (University of Southern California), Jelena Mirkovic (University of Southern California)

Read More