Florian Lachner, Minzhe Yuan Chen Cheng, Theodore Olsauskas-Warren (Google)

Online behavioral advertising is a double-edged sword. While relevant display ads are generally considered useful, opaque tracking based on third-party cookies has reached unfettered sprawl and is deemed to be privacy-intrusive. However, existing ways to preserve privacy do not sufficiently balance the needs of both users and the ecosystem. In this work, we evaluate alternative browser controls. We leverage the idea of inferring interests on users’ devices and designed novel browser controls to manage these interests. Through a mixed method approach, we studied how users feel about this approach. First, we conducted pilot interviews with 9 participants to test two design directions. Second, we ran a survey with 2,552 respondents to measure how our final design compares with current cookie settings. Respondents reported a significantly higher level of perceived privacy and feeling of control when introduced to the concept of locally inferred interests with an option for removal.

View More Papers

Lightning Community Shout-Outs to:

(1) Jonathan Petit, Secure ML Performance Benchmark (Qualcomm) (2) David Balenson, The Road to Future Automotive Research Datasets: PIVOT Project and Community Workshop (USC Information Sciences Institute) (3) Jeremy Daily, CyberX Challenge Events (Colorado State University) (4) Mert D. Pesé, DETROIT: Data Collection, Translation and Sharing for Rapid Vehicular App Development (Clemson University) (5) Ning…

Read More

Learning Automated Defense Strategies Using Graph-Based Cyber Attack Simulations

Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

Read More

Access Your Tesla without Your Awareness: Compromising Keyless Entry...

Xinyi Xie (Shanghai Fudan Microelectronics Group Co., Ltd.), Kun Jiang (Shanghai Fudan Microelectronics Group Co., Ltd.), Rui Dai (Shanghai Fudan Microelectronics Group Co., Ltd.), Jun Lu (Shanghai Fudan Microelectronics Group Co., Ltd.), Lihui Wang (Shanghai Fudan Microelectronics Group Co., Ltd.), Qing Li (State Key Laboratory of ASIC & System, Fudan University), Jun Yu (State Key…

Read More

BlockScope: Detecting and Investigating Propagated Vulnerabilities in Forked Blockchain...

Xiao Yi (The Chinese University of Hong Kong), Yuzhou Fang (The Chinese University of Hong Kong), Daoyuan Wu (The Chinese University of Hong Kong), Lingxiao Jiang (Singapore Management University)

Read More