Zachary Depp, Halit Bugra Tulay, C. Emre Koksal (The Ohio State University)

The traditional vehicular roll-jam attack is an effective means to gain access to the target vehicle by jamming and recording key fob inputs from a victim. However, it requires specific knowledge of the attack surface, and delicate tuning of software-defined radio parameters. We have developed an enhanced version of the roll-jam attack that uses a known noise signal for jamming, in contrast to the additive white Gaussian noise that is typically used in the attack. Using a known noise signal allows for less strict tuning of the software-defined radios used in the attack, and allows for digital noise removal of the recorded input to enhance the replay attack.

View More Papers

Guess Which Car Type I Am Driving: Information Leak...

Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

Read More

AutoWatch: Learning Driver Behavior with Graphs for Auto Theft...

Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Read More

Ghost Domain Reloaded: Vulnerable Links in Domain Name Delegation...

Xiang Li (Tsinghua University), Baojun Liu (Tsinghua University), Xuesong Bai (University of California, Irvine), Mingming Zhang (Tsinghua University), Qifan Zhang (University of California, Irvine), Zhou Li (University of California, Irvine), Haixin Duan (Tsinghua University; QI-ANXIN Technology Research Institute; Zhongguancun Laboratory), Qi Li (Tsinghua University; Zhongguancun Laboratory)

Read More