Andrei Costin, Hannu Turtiainen, Syed Khandkher and Timo Hamalainen (Faculty of Information Technology, University of Jyvaskyla, Finland) Presenter: Andrei Costin

Aviation, maritime, and aerospace traffic control, radar, communication, and software technologies received increasing attention in the research literature over the past decade, as software-defined radios have enabled practical wireless attacks on communication links previously thought to be unreachable by unskilled or low-budget attackers. Moreover, recently it became apparent that both offensive and defensive cybersecurity has become a strategically differentiating factor for such technologies on the war fields (e.g., Ukraine), affecting both civilian and military missions regardless of their involvement. However, attacks and countermeasures are usually studied in simulated settings, thus introducing the lack of realism or non-systematic and highly customized practical setups, thus introducing high costs, overheads, and less reproducibility. Our ``Unified Cybersecurity Testing Lab'' seeks to close this gap by building a laboratory that can provide a systematic, affordable, highly-flexible, and extensible setup.

In this paper, we introduce and motivate our ``Unified Cybersecurity Testing Lab for Satellite, Aerospace, Avionics, Maritime, Drone (SAAMD)'' technologies and communications, as well as some peer-reviewed results and evaluation of the targeted threat vectors. We show via referenced peer-reviewed works that the current modules of the lab were successfully used to realistically attack and analyze air-traffic control, radar, communication, and software technologies such as ADS-B, AIS, ACARS, EFB, EPIRB and COSPAS-SARSAT. We are currently developing and integrating support for additional technologies (e.g., CCSDS, FLARM), and we plan future extensions on our own as well as in collaboration with research and industry. Our ``Unified Cybersecurity Testing Lab'' is open for use, experimentation, and collaboration with other researchers, contributors and interested parties.

View More Papers

Automatic Retrieval of Privacy Factors from IoMT Policies: ML...

Nyteisha Bookert, Mohd Anwar (North Carolina Agricultural and Technical State University)

Read More

Connecting the Dots in the Sky: Website Fingerprinting in...

Prabhjot Singh (University of Waterloo), Diogo Barradas (University of Waterloo), Tariq Elahi (University of Edinburgh), Noura Limam (University of Waterloo)

Read More

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More

No Grammar, No Problem: Towards Fuzzing the Linux Kernel...

Alexander Bulekov (Boston University), Bandan Das (Red Hat), Stefan Hajnoczi (Red Hat), Manuel Egele (Boston University)

Read More