Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Reverse engineering unknown binaries is a difficult, resource intensive process due to information loss and optimizations performed by compilers that introduce significant binary diversity. Existing binary similarity approaches do not scale or are inaccurate. In this paper, we introduce IOVec Function Identification (IOVFI), which assesses similarity based on program state transformations, which compilers largely guarantee even across compilation environments and architectures. IOVFI executes functions with initial predetermined program states, measures the resulting program state changes, and uses the sets of input and output state vectors as unique semantic fingerprints. Since IOVFI relies on state vectors, and not code measurements, it withstands broad changes in compilers and optimizations used to generate a binary.

Evaluating our IOVFI implementation as a semantic function identifier for coreutils-8.32, we achieve a high .773 average F-Score, indicating high precision and recall. When identifying functions generated from differing compilation environments, IOVFI achieves a 100% accuracy improvement over BinDiff 6, outperforms asm2vec in cross-compilation environment accuracy, and, when compared to dynamic frameworks, BLEX and IMF-SIM, IOVFI is 25%–53% more accurate.

View More Papers

Understanding the Ethical Frameworks of Internet Measurement Studies

Eric Pauley and Patrick McDaniel (University of Wisconsin–Madison)

Read More

Adversarial Robustness for Tabular Data through Cost and Utility...

Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Read More

Reminding Drivers of the Stalking Vehicles on the Road

Wei Sun, Kannan Srinivsan (The Ohio State University)

Read More

Sn4ke: Practical Mutation Analysis of Tests at Binary Level

Mohsen Ahmadi (Arizona State University), Pantea Kiaei (Worcester Polytechnic Institute), Navid Emamdoost (University of Minnesota)

Read More