Derrick McKee (Purdue University), Nathan Burow (MIT Lincoln Laboratory), Mathias Payer (EPFL)

Reverse engineering unknown binaries is a difficult, resource intensive process due to information loss and optimizations performed by compilers that introduce significant binary diversity. Existing binary similarity approaches do not scale or are inaccurate. In this paper, we introduce IOVec Function Identification (IOVFI), which assesses similarity based on program state transformations, which compilers largely guarantee even across compilation environments and architectures. IOVFI executes functions with initial predetermined program states, measures the resulting program state changes, and uses the sets of input and output state vectors as unique semantic fingerprints. Since IOVFI relies on state vectors, and not code measurements, it withstands broad changes in compilers and optimizations used to generate a binary.

Evaluating our IOVFI implementation as a semantic function identifier for coreutils-8.32, we achieve a high .773 average F-Score, indicating high precision and recall. When identifying functions generated from differing compilation environments, IOVFI achieves a 100% accuracy improvement over BinDiff 6, outperforms asm2vec in cross-compilation environment accuracy, and, when compared to dynamic frameworks, BLEX and IMF-SIM, IOVFI is 25%–53% more accurate.

View More Papers

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More

Augmented Reality’s Potential for Identifying and Mitigating Home Privacy...

Stefany Cruz (Northwestern University), Logan Danek (Northwestern University), Shinan Liu (University of Chicago), Christopher Kraemer (Georgia Institute of Technology), Zixin Wang (Zhejiang University), Nick Feamster (University of Chicago), Danny Yuxing Huang (New York University), Yaxing Yao (University of Maryland), Josiah Hester (Georgia Institute of Technology)

Read More

Trellis: Robust and Scalable Metadata-private Anonymous Broadcast

Simon Langowski (Massachusetts Institute of Technology), Sacha Servan-Schreiber (Massachusetts Institute of Technology), Srinivas Devadas (Massachusetts Institute of Technology)

Read More

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More