Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

The Controller Area Network (CAN) is widely deployed as the de facto global standard for the communication between Electronic Control Units (ECUs) in the automotive sector. Despite being unencrypted, the data transmitted over CAN is encoded according to the Original Equipment Manufacturers (OEMs) specifications, and their formats are kept secret from the general public. Thus, the only way to obtain accurate vehicle information from the CAN bus is through reverse engineering. Aftermarket companies and academic researchers have focused on automating the CAN reverse-engineering process to improve its speed and scalability. However, the manufacturers have recently started multiplexing the CAN frames primarily for platform upgrades, rendering state-of-the-art (SOTA) reverse engineering ineffective. To overcome this new barrier, we present CAN Multiplexed Frames Translator (CAN-MXT), the first tool for the identification of new-generation multiplexed CAN frames. We also introduce CAN Multiplexed Frames Generator (CANMXG), a tool for the parsing of standard CAN traffic into multiplexed traffic, facilitating research and app development on CAN multiplexing.

View More Papers

PriSrv: Privacy-Enhanced and Highly Usable Service Discovery in Wireless...

Yang Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Robert H. Deng (School of Computing and Information Systems, Singapore Management University, Singapore), Guomin Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Yingjiu Li (Department of Computer Science, University of Oregon, USA), HweeHwa Pang (School of Computing and Information Systems,…

Read More

Understanding and Analyzing Appraisal Systems in the Underground Marketplaces

Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington)

Read More

MPCDiff: Testing and Repairing MPC-Hardened Deep Learning Models

Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Read More

Security-Performance Tradeoff in DAG-based Proof-of-Work Blockchain Protocols

Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Read More