H M Sabbir Ahmad (Boston University), Ehsan Sabouni (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos G. Cassandras (Boston University), Wenchao Li (Boston University)

In this paper we analyze the effect of cyberattacks on cooperative control of connected and autonomous vehicles (CAVs) at traffic bottleneck points. We focus on three types of such bottleneck points including merging roadways, intersections and roundabouts. The coordination amongst CAVs in the network is achieved in a decentralized manner whereby each CAV formulates its own optimal control problem and solves it onboard in real time. A roadside unit is introduced to act as the coordinator that communicates and exchanges relevant data with the CAVs through wireless V2X communication. We show that this CAV setup is vulnerable to various cyberattacks such as Sybil attack, jamming attack and false data injection attack. Results from our simulation experiments call attention to the extent to which such attacks may jeopardize the coordination performance and the safety of the CAVs.

View More Papers

Applying Accessibility Metrics to Measure the Threat Landscape for...

John Breton, AbdelRahman Abdou (Carleton University)

Read More

Access Your Tesla without Your Awareness: Compromising Keyless Entry...

Xinyi Xie (Shanghai Fudan Microelectronics Group Co., Ltd.), Kun Jiang (Shanghai Fudan Microelectronics Group Co., Ltd.), Rui Dai (Shanghai Fudan Microelectronics Group Co., Ltd.), Jun Lu (Shanghai Fudan Microelectronics Group Co., Ltd.), Lihui Wang (Shanghai Fudan Microelectronics Group Co., Ltd.), Qing Li (State Key Laboratory of ASIC & System, Fudan University), Jun Yu (State Key…

Read More

QUICforge: Client-side Request Forgery in QUIC

Yuri Gbur (Technische Universität Berlin), Florian Tschorsch (Technische Universität Berlin)

Read More