Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

As the advent of autonomous vehicle (AV) technology revolutionizes transportation, it simultaneously introduces new vulnerabilities to cyber-attacks, posing significant challenges to vehicle safety and security. The complexity of these systems, coupled with their increasing reliance on advanced computer vision and machine learning algorithms, makes them susceptible to sophisticated AV attacks. This paper* explores the potential of Large Multimodal Models (LMMs) in identifying Natural Denoising Diffusion (NDD) attacks on traffic signs. Our comparative analysis show the superior performance of LMMs in detecting NDD samples with an average accuracy of 82.52% across the selected models compared to 37.75% for state-of-the-art deep learning models. We further discuss the integration of LMMs within the resource-constrained computational environments to mimic typical autonomous vehicles and assess their practicality through latency benchmarks. Results show substantial superiority of GPT models in achieving lower latency, down to 4.5 seconds per image for both computation time and network latency (RTT), suggesting a viable path towards real-world deployability. Lastly, we extend our analysis to LMMs’ applicability against a wider spectrum of AV attacks, particularly focusing on the Automated Lane Centering systems, emphasizing the potential of LMMs to enhance vehicular cybersecurity.

View More Papers

Free Proxies Unmasked: A Vulnerability and Longitudinal Analysis of...

Naif Mehanna (Univ. Lille / Inria / CNRS), Walter Rudametkin (IRISA / Univ Rennes), Pierre Laperdrix (CNRS, Univ Lille, Inria Lille), and Antoine Vastel (Datadome)

Read More

Group-based Robustness: A General Framework for Customized Robustness in...

Weiran Lin (Carnegie Mellon University), Keane Lucas (Carnegie Mellon University), Neo Eyal (Tel Aviv University), Lujo Bauer (Carnegie Mellon University), Michael K. Reiter (Duke University), Mahmood Sharif (Tel Aviv University)

Read More

Exploiting Transport Protocol Vulnerabilities in SAE J1939 Networks

Rik Chatterjee, Subhojeet Mukherjee, Jeremy Daily (Colorado State University)

Read More

Exploiting Sequence Number Leakage: TCP Hijacking in NAT-Enabled Wi-Fi...

Yuxiang Yang (Tsinghua University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ke Xu (Tsinghua University)

Read More