Mohammed Aldeen, Pedram MohajerAnsari, Jin Ma, Mashrur Chowdhury, Long Cheng, Mert D. Pesé (Clemson University)

As the advent of autonomous vehicle (AV) technology revolutionizes transportation, it simultaneously introduces new vulnerabilities to cyber-attacks, posing significant challenges to vehicle safety and security. The complexity of these systems, coupled with their increasing reliance on advanced computer vision and machine learning algorithms, makes them susceptible to sophisticated AV attacks. This paper* explores the potential of Large Multimodal Models (LMMs) in identifying Natural Denoising Diffusion (NDD) attacks on traffic signs. Our comparative analysis show the superior performance of LMMs in detecting NDD samples with an average accuracy of 82.52% across the selected models compared to 37.75% for state-of-the-art deep learning models. We further discuss the integration of LMMs within the resource-constrained computational environments to mimic typical autonomous vehicles and assess their practicality through latency benchmarks. Results show substantial superiority of GPT models in achieving lower latency, down to 4.5 seconds per image for both computation time and network latency (RTT), suggesting a viable path towards real-world deployability. Lastly, we extend our analysis to LMMs’ applicability against a wider spectrum of AV attacks, particularly focusing on the Automated Lane Centering systems, emphasizing the potential of LMMs to enhance vehicular cybersecurity.

View More Papers

BreakSPF: How Shared Infrastructures Magnify SPF Vulnerabilities Across the...

Chuhan Wang (Tsinghua University), Yasuhiro Kuranaga (Tsinghua University), Yihang Wang (Tsinghua University), Mingming Zhang (Zhongguancun Laboratory), Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Haixin Duan (Tsinghua University; Quan Cheng Lab; Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd)

Read More

Understanding the Internet-Wide Vulnerability Landscape for ROS-based Robotic Vehicles...

Wentao Chen, Sam Der, Yunpeng Luo, Fayzah Alshammari, Qi Alfred Chen (University of California, Irvine)

Read More

Lightning Community Shout-Outs to:

(1) Jonathan Petit, Secure ML Performance Benchmark (Qualcomm) (2) David Balenson, The Road to Future Automotive Research Datasets: PIVOT Project and Community Workshop (USC Information Sciences Institute) (3) Jeremy Daily, CyberX Challenge Events (Colorado State University) (4) Mert D. Pesé, DETROIT: Data Collection, Translation and Sharing for Rapid Vehicular App Development (Clemson University) (5) Ning…

Read More

VETEOS: Statically Vetting EOSIO Contracts for the “Groundhog Day”...

Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

Read More