Panos Kampanakis and Will Childs-Klein (AWS)

It has been shown that post-quantum key exchange and authentication with ML-KEM and ML-DSA, NIST’s post-quantum algorithm picks, will have an impact on TLS 1.3 performance used in the Web or other applications. Studies so far have focused on the overhead of quantum-resistant algorithms on TLS time-to-first-byte (handshake time). Although these works have been important in quantifying the slowdown in connection establishment, they do not capture the full picture regarding real-world TLS 1.3 connections which carry sizable amounts of data. Intuitively, the introduction of an extra 10KB of ML-KEM and ML-DSA exchanges in the connection negotiation will inflate the connection establishment time proportionally more than it will increase the total connection time of a Web connection carrying 200KB of data. In this work, we quantify the impact of ML-KEM and ML-DSA on typical TLS 1.3 connections which transfer a few hundreds of KB from the server to the client. We study the slowdown in the time-to-last-byte of post-quantum connections under normal network conditions and in more unstable environments with high packet delay variability and loss probabilities. We show that the impact of ML-KEM and ML-DSA on the TLS 1.3 time-to-last-byte under stable network conditions is lower than the impact on the time-to-first-byte and diminishes as the transferred data increases. The time-to-last-byte increase stays below 5% for high-bandwidth, stable networks. It goes from 32% increase of the time-to-first-byte to under 15% increase of the time-to-last-byte when transferring 50KiB of data or more under low-bandwidth, stable network conditions. Even when congestion control affects connection establishment, the additional slowdown drops below 10% as the connection data increases to 200KiB. We also show that connections in lossy or volatile networks could see higher impact from post-quantum handshakes, but these connections’ time-to-last-byte degradation still drops as the transferred data increases. Finally, we show that such connections are already significantly slow and volatile regardless of the TLS handshake.

View More Papers

Eavesdropping on Controller Acoustic Emanation for Keystroke Inference Attack...

Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Read More

Experimental Analyses of the Physical Surveillance Risks in Client-Side...

Ashish Hooda (University of Wisconsin-Madison), Andrey Labunets (UC San Diego), Tadayoshi Kohno (University of Washington), Earlence Fernandes (UC San Diego)

Read More

Don't Interrupt Me – A Large-Scale Study of On-Device...

Marian Harbach (Google), Igor Bilogrevic (Google), Enrico Bacis (Google), Serena Chen (Google), Ravjit Uppal (Google), Andy Paicu (Google), Elias Klim (Google), Meggyn Watkins (Google), Balazs Engedy (Google)

Read More

WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers...

Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

Read More