Yi Han, Shujiang Wu, Mengmeng Li, Zixi Wang, and Pengfei Sun (F5)

Online fraud has emerged as a formidable challenge in the digital age, presenting a serious threat to individuals and organizations worldwide. Characterized by its ever-evolving nature, this type of fraud capitalizes on the rapid development of Internet technologies and the increasing digitization of financial transactions. In this paper, we address the critical need to understand and combat online fraud by conducting an unprecedented analysis based on extensive real-world transaction data.

Our study involves a multi-angle, multi-platform examination of fraudsters' approaches, behaviors and intentions. The findings of our study are significant, offering detailed insights into the characteristics, patterns and methods of online fraudulent activities and providing a clear picture of the current landscape of digital deception. To the best of our knowledge, we are the first to conduct such large-scale measurements using industrial-level real-world online transaction data.

View More Papers

TALISMAN: Tamper Analysis for Reference Monitors

Frank Capobianco (The Pennsylvania State University), Quan Zhou (The Pennsylvania State University), Aditya Basu (The Pennsylvania State University), Trent Jaeger (The Pennsylvania State University, University of California, Riverside), Danfeng Zhang (The Pennsylvania State University, Duke University)

Read More

Predictive Context-sensitive Fuzzing

Pietro Borrello (Sapienza University of Rome), Andrea Fioraldi (EURECOM), Daniele Cono D'Elia (Sapienza University of Rome), Davide Balzarotti (Eurecom), Leonardo Querzoni (Sapienza University of Rome), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

Not your Type! Detecting Storage Collision Vulnerabilities in Ethereum...

Nicola Ruaro (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Robert McLaughlin (University of California, Santa Barbara), Ilya Grishchenko (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

Read More

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More