Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

As the integration of Internet of Things devices continues to increase, the security challenges associated with autonomous, self-executing Internet of Things devices become increasingly critical. This research addresses the vulnerability of deep learning-based malware threat-hunting models, particularly in the context of Industrial Internet of Things environments. The study introduces an innovative adversarial machine learning attack model tailored for generating adversarial payloads at the bytecode level of executable files.

Our investigation focuses on the Malconv malware threat hunting model, employing the Fast Gradient Sign methodology as the attack model to craft adversarial instances. The proposed methodology is systematically evaluated using a comprehensive dataset sourced from instances of cloud-edge Internet of Things malware. The empirical findings reveal a significant reduction in the accuracy of the malware threat-hunting model, plummeting from an initial 99% to 82%. Moreover, our proposed approach sheds light on the effectiveness of adversarial attacks leveraging code repositories, showcasing their ability to evade AI-powered malware threat-hunting mechanisms.

This work not only offers a practical solution for bolstering deep learning-based malware threat-hunting models in Internet of Things environments but also underscores the pivotal role of code repositories as a potential attack vector. The outcomes of this investigation emphasize the imperative need to recognize code repositories as a distinct attack surface within the landscape of malware threat-hunting models deployed in the Internet of Things environments.

View More Papers

Unus pro omnibus: Multi-Client Searchable Encryption via Access Control

Jiafan Wang (Data61, CSIRO), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More

Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural...

Gorka Abad (Radboud University & Ikerlan Technology Research Centre), Oguzhan Ersoy (Radboud University), Stjepan Picek (Radboud University & Delft University of Technology), Aitor Urbieta (Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA))

Read More

Analysis of Misconfigured IoT MQTT Deployments and a Lightweight...

Seyed Ali Ghazi Asgar, Narasimha Reddy (Texas A&M University)

Read More