Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

As the integration of Internet of Things devices continues to increase, the security challenges associated with autonomous, self-executing Internet of Things devices become increasingly critical. This research addresses the vulnerability of deep learning-based malware threat-hunting models, particularly in the context of Industrial Internet of Things environments. The study introduces an innovative adversarial machine learning attack model tailored for generating adversarial payloads at the bytecode level of executable files.

Our investigation focuses on the Malconv malware threat hunting model, employing the Fast Gradient Sign methodology as the attack model to craft adversarial instances. The proposed methodology is systematically evaluated using a comprehensive dataset sourced from instances of cloud-edge Internet of Things malware. The empirical findings reveal a significant reduction in the accuracy of the malware threat-hunting model, plummeting from an initial 99% to 82%. Moreover, our proposed approach sheds light on the effectiveness of adversarial attacks leveraging code repositories, showcasing their ability to evade AI-powered malware threat-hunting mechanisms.

This work not only offers a practical solution for bolstering deep learning-based malware threat-hunting models in Internet of Things environments but also underscores the pivotal role of code repositories as a potential attack vector. The outcomes of this investigation emphasize the imperative need to recognize code repositories as a distinct attack surface within the landscape of malware threat-hunting models deployed in the Internet of Things environments.

View More Papers

TextGuard: Provable Defense against Backdoor Attacks on Text Classification

Hengzhi Pei (UIUC), Jinyuan Jia (UIUC, Penn State), Wenbo Guo (UC Berkeley, Purdue University), Bo Li (UIUC), Dawn Song (UC Berkeley)

Read More

Strengthening Privacy in Robust Federated Learning through Secure Aggregation

Tianyue Chu, Devriş İşler (IMDEA Networks Institute & Universidad Carlos III de Madrid), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

SENSE: Enhancing Microarchitectural Awareness for TEEs via Subscription-Based Notification

Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Read More