Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

As the integration of Internet of Things devices continues to increase, the security challenges associated with autonomous, self-executing Internet of Things devices become increasingly critical. This research addresses the vulnerability of deep learning-based malware threat-hunting models, particularly in the context of Industrial Internet of Things environments. The study introduces an innovative adversarial machine learning attack model tailored for generating adversarial payloads at the bytecode level of executable files.

Our investigation focuses on the Malconv malware threat hunting model, employing the Fast Gradient Sign methodology as the attack model to craft adversarial instances. The proposed methodology is systematically evaluated using a comprehensive dataset sourced from instances of cloud-edge Internet of Things malware. The empirical findings reveal a significant reduction in the accuracy of the malware threat-hunting model, plummeting from an initial 99% to 82%. Moreover, our proposed approach sheds light on the effectiveness of adversarial attacks leveraging code repositories, showcasing their ability to evade AI-powered malware threat-hunting mechanisms.

This work not only offers a practical solution for bolstering deep learning-based malware threat-hunting models in Internet of Things environments but also underscores the pivotal role of code repositories as a potential attack vector. The outcomes of this investigation emphasize the imperative need to recognize code repositories as a distinct attack surface within the landscape of malware threat-hunting models deployed in the Internet of Things environments.

View More Papers

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More

COSPAS Search and Rescue Satellite Uplink: A MAC-Based Security...

Syed Khandker (New York University Abu Dhabi), Krzysztof Jurczok (Amateur Radio Operator), Christina Pöpper (New York University Abu Dhabi)

Read More

A Cross-Verification Approach with Publicly Available Map for Detecting...

Takami Sato, Ningfei Wang (University of California, Irvine), Yueqiang Cheng (NIO Security Research), Qi Alfred Chen (University of California, Irvine)

Read More

You Can Use But Cannot Recognize: Preserving Visual Privacy...

Qiushi Li (Tsinghua University), Yan Zhang (Tsinghua University), Ju Ren (Tsinghua University), Qi Li (Tsinghua University), Yaoxue Zhang (Tsinghua University)

Read More