Filipo Sharevski (DePaul University), Mattia Mossano, Maxime Fabian Veit, Gunther Schiefer, Melanie Volkamer (Karlsruhe Institute of Technology)

QR codes, designed for convenient access to links, have recently been appropriated as phishing attack vectors. As this type of phishing is relatively and many aspects of the threat in real conditions are unknown, we conducted a study in naturalistic settings (n=42) to explore how people behave around QR codes that might contain phishing links. We found that 28 (67%) of our participants opened the link embedded in the QR code without inspecting the URL for potential phishing cues. As a pretext, we used a poster that invited people to scan a QR code and contribute to a humanitarian aid. The choice of a pretext was persuasive enough that 22 (52%) of our participants indicated that it was the main reason why they scanned the QR code and accessed the embedded link in the first place. We used three link variants to test if people are able to spot a potential phishing threat associated with the poster’s QR code (every participant scanned only one variant). In the variants where the link appeared legitimate or it was obfuscated by a link shortening service, only two out of 26 participants (8%) abandoned the URL when they saw the preview in the QR code scanner app. In the variant when the link explicitly contained the word “phish” in the domain name, this ratio rose to 7 out of 16 participants (44%). We use our findings to propose usable security interventions in QR code scanner apps intended to warn users about potentially phishing links.

View More Papers

GNNIC: Finding Long-Lost Sibling Functions with Abstract Similarity

Qiushi Wu (University of Minnesota), Zhongshu Gu (IBM Research), Hani Jamjoom (IBM Research), Kangjie Lu (University of Minnesota)

Read More

Make your IoT environments robust against adversarial machine learning...

Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

Read More

Like, Comment, Get Scammed: Characterizing Comment Scams on Media...

Xigao Li (Stony Brook University), Amir Rahmati (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

REPLICAWATCHER: Training-less Anomaly Detection in Containerized Microservices

Asbat El Khairi (University of Twente), Marco Caselli (Siemens AG), Andreas Peter (University of Oldenburg), Andrea Continella (University of Twente)

Read More