Tobias Länge (Karlsruhe Institute of Technology), Philipp Matheis (Karlsruhe Institute of Technology), Reyhan Düzgün (Ruhr University Bochum), Melanie Volkamer (Karlsruhe Institute of Technology), Peter Mayer (Karlsruhe Institute of Technology, University of Southern Denmark)

Virtual reality (VR) is a growing technology with social, gaming and commercial applications. Due to the sensitive data involved, these systems require secure authentication. Shoulder-surfing, in particular, poses a significant threat as (1) interaction is mostly performed by means of visible gestures and (2) wearing the glasses prevents noticing bystanders. In this paper, we analyze research proposing shoulder-surfing resistant schemes for VR and present new shoulder-surfing resistant authentication schemes. Furthermore, we conducted a user study and found authenticating with our proposed schemes is efficient with times as low as 5.1 seconds. This is faster than previous shoulder-surfing resistant VR schemes, while offering similar user satisfaction.

View More Papers

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More

TextGuard: Provable Defense against Backdoor Attacks on Text Classification

Hengzhi Pei (UIUC), Jinyuan Jia (UIUC, Penn State), Wenbo Guo (UC Berkeley, Purdue University), Bo Li (UIUC), Dawn Song (UC Berkeley)

Read More

EnclaveFuzz: Finding Vulnerabilities in SGX Applications

Liheng Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Institute for Network Science and Cyberspace of Tsinghua University), Zheming Li (Institute for Network Science and Cyberspace of Tsinghua University), Zheyu Ma (Institute for Network Science and Cyberspace of Tsinghua University), Yuan Li (Tsinghua University),…

Read More