Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Wearable devices, often used in healthcare and wellness, collect personal health data via sensors and share it with nearby devices for processing. Considering that healthcare decisions may be based on the collected data, ensuring the privacy and security of data sharing is critical. As the hardware and abilities of these wearable devices evolve, we observe a shift in perspectives: they will no longer be mere data collectors, rather they become empowered to collaborate and provide users with enhanced insights directly from their bodies with ondevice processing. However, today’s data sharing protocols do not support secure data sharing directly between wearables. To this end, we develop a comprehensive threat model for such scenarios and propose a protocol, SecuWear, for secure real-time data sharing between wearable devices. It enables secure data sharing between any set of devices owned by a user by authenticating devices with the help of an orchestrator device. This orchestrator, one of the user’s devices, enforces access control policies and verifies the authenticity of public keys. Once authenticated, the data encryption key is directly shared between the data provider and data consumer devices. Furthermore, SecuWear enables multiple data consumers to subscribe to one data provider, enabling efficient and scalable data sharing. In evaluation, we conduct an informal security analysis to demonstrate the robustness of SecuWear and the resource overhead. It imposes latency overhead of approximately 1.7s for setting up a data sharing session, which is less than 0.2% for a session lasting 15 minutes.

View More Papers

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

Blindfold: Confidential Memory Management by Untrusted Operating System

Caihua Li (Yale University), Seung-seob Lee (Yale University), Lin Zhong (Yale University)

Read More

Hitchhiking Vaccine: Enhancing Botnet Remediation With Remote Code Deployment...

Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

Read More

ICSQuartz: Scan Cycle-Aware and Vendor-Agnostic Fuzzing for Industrial Control...

Corban Villa (New York University Abu Dhabi), Constantine Doumanidis (New York University Abu Dhabi), Hithem Lamri (New York University Abu Dhabi), Prashant Hari Narayan Rajput (InterSystems), Michail Maniatakos (New York University Abu Dhabi)

Read More