Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Wearable devices, often used in healthcare and wellness, collect personal health data via sensors and share it with nearby devices for processing. Considering that healthcare decisions may be based on the collected data, ensuring the privacy and security of data sharing is critical. As the hardware and abilities of these wearable devices evolve, we observe a shift in perspectives: they will no longer be mere data collectors, rather they become empowered to collaborate and provide users with enhanced insights directly from their bodies with ondevice processing. However, today’s data sharing protocols do not support secure data sharing directly between wearables. To this end, we develop a comprehensive threat model for such scenarios and propose a protocol, SecuWear, for secure real-time data sharing between wearable devices. It enables secure data sharing between any set of devices owned by a user by authenticating devices with the help of an orchestrator device. This orchestrator, one of the user’s devices, enforces access control policies and verifies the authenticity of public keys. Once authenticated, the data encryption key is directly shared between the data provider and data consumer devices. Furthermore, SecuWear enables multiple data consumers to subscribe to one data provider, enabling efficient and scalable data sharing. In evaluation, we conduct an informal security analysis to demonstrate the robustness of SecuWear and the resource overhead. It imposes latency overhead of approximately 1.7s for setting up a data sharing session, which is less than 0.2% for a session lasting 15 minutes.

View More Papers

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Crosstalk-induced Side Channel Threats in Multi-Tenant NISQ Computers

Ruixuan Li (Choudhury), Chaithanya Naik Mude (University of Wisconsin-Madison), Sanjay Das (The University of Texas at Dallas), Preetham Chandra Tikkireddi (University of Wisconsin-Madison), Swamit Tannu (University of Wisconsin, Madison), Kanad Basu (University of Texas at Dallas)

Read More

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More