Yichen Liu (Indiana University Bloomington), Jingwen Yan (Clemson University), Song Liao (Texas Tech University), Long Cheng (Clemson University), Luyi Xing (Indiana University Bloomington)

Privacy compliance has become a significant concern for IoT users as the popularity of diverse IoT devices continues to grow. However, the heterogeneous nature of IoT brings challenges in designing effective privacy-preserving mechanisms. While Matter is a promising unifying connectivity protocol for IoT, it currently offers limited privacy compliance features. In this position paper, we propose the MATTERCOMPLIANCE framework, which achieves privacy compliance by design within the Matter protocol. The design of MATTERCOMPLIANCE follows three principles: providing reliable and proactive privacy disclosure for users, offering interfaces for developers to conveniently integrate privacy mechanisms, and enabling users to manage their privacy settings. By integrating privacy-preserving capabilities in the Matter protocol, MATTERCOMPLIANCE fills the gap in offering a unified solution for privacy compliance in IoT systems.

View More Papers

A Key-Driven Framework for Identity-Preserving Face Anonymization

Miaomiao Wang (Shanghai University), Guang Hua (Singapore Institute of Technology), Sheng Li (Fudan University), Guorui Feng (Shanghai University)

Read More

Translating C To Rust: Lessons from a User Study

Ruishi Li (National University of Singapore), Bo Wang (National University of Singapore), Tianyu Li (National University of Singapore), Prateek Saxena (National University of Singapore), Ashish Kundu (Cisco Research)

Read More

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

Make your IoT environments robust against adversarial machine learning...

Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

Read More