Rupam Patir (University at Buffalo), Qiqing Huang (University at Buffalo), Keyan Guo (University at Buffalo), Wanda Guo (Texas A&M University), Guofei Gu (Texas A&M University), Haipeng Cai (University at Buffalo), Hongxin Hu (University at Buffalo)

The rapid evolution of software systems in 5G networks has heightened the need for robust security measures. Traditional code analysis methods often fail to detect vulnerabilities specific to 5G, particularly vulnerabilities stemming from complex protocol interactions. In this work, we explore the potential of LLM-assisted techniques in vulnerability detection and repair in open-source 5G implementations. We introduce a novel framework leveraging Chain-of-Thought (CoT) prompting in two phases: first, vulnerability detection based on 5G Vulnerability Properties (VPs); second, vulnerability repair guided by 5G Secure Coding Practices (SCPs). We conducted a case study on an open-source 5G User Equipment (UE) implementation that illustrates how our framework leverages vulnerability properties and SCPs to identify and remediate vulnerabilities. Our testing results indicate successful detection and repair, demonstrating the practicality and effectiveness of our approach. While challenges persist, including the identification of 5G-specific security properties and SCPs and the complexity of their integration, this study provides a foundation for advancing automated LLM-assisted solutions to strengthen the security of open-source 5G systems.

View More Papers

Diffence: Fencing Membership Privacy With Diffusion Models

Yuefeng Peng (University of Massachusetts Amherst), Ali Naseh (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst)

Read More

Non-intrusive and Unconstrained Keystroke Inference in VR Platforms via...

Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Read More

SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Read More

Revisiting EM-based Estimation for Locally Differentially Private Protocols

Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

Read More