Yuxi Wu (Georgia Institute of Technology and Northeastern University), Jacob Logas (Georgia Institute of Technology), Devansh Ponda (Georgia Institute of Technology), Julia Haines (Google), Jiaming Li (Google), Jeffrey Nichols (Apple), W. Keith Edwards (Georgia Institute of Technology), Sauvik Das (Carnegie Mellon University)

Users make hundreds of transactional permission decisions for smartphone applications, but these decisions persist beyond the context in which they were made. We hypothesized that user concern over permissions varies by context, e.g., that users might be more concerned about location permissions at home than work. To test our hypothesis, we ran a 44-participant, 4-week experience sampling study, asking users about their concern over specific application-permission pairs, plus their physical environment and context. We found distinguishable differences in participants’ concern about permissions across locations and activities, suggesting that users might benefit from more dynamic and contextually-aware approaches to permission decision-making. However, attempts to assist users in configuring these more complex permissions should be made with the aim to reduce concern and affective discomfort—not to normalize and perpetuate this discomfort by replicating prior decisions alone.

View More Papers

Designing a Mobile App to Support Social Processes for...

Zaina Aljallad (University of Central Florida); Wentao Guo (Pomona College); Chhaya Chouhan, Christy Laperriere (University of Central Florida); Jess Kropczynski (University of Cincinnati); Pamela Wisnewski (University of Central Florida); Heather Lipford (University of North Carolina at Charlotte)

Read More

Poster: FORESIGHT, A Unified Framework for Threat Modeling and...

ChaeYoung Kim (Seoul Women's University), Kyounggon Kim (Naif Arab University for Security Sciences)

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

DRAGON: Predicting Decompiled Variable Data Types with Learned Confidence...

Caleb Stewart, Rhonda Gaede, Jeffrey Kulick (University of Alabama in Huntsville)

Read More