Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

As the number of mobile applications continues to grow, privacy labels (e.g. Apple’s Privacy Labels and Google’s Data Safety Section) emerge as a potential solution to help users understand how apps collect, use and share their data. However, it remains unclear whether these labels actually enhance user understanding to build trust in app developers or influence their download decisions. In this paper, we investigate user perceptions of privacy labels through a comprehensive analysis of online discussions and a structured user study. We first collect and analyze Reddit posts related to privacy labels, and manually analyze the discussions to understand users’ concerns and suggestions. Our analysis reveals that users are skeptical of self-reported privacy labels provided by developers and they struggle to interpret the terminology used in the labels. Users also expressed a desire for clearer explanations about why specific data is collected and emphasized the importance of third-party verification to ensure the accuracy of privacy labels. To complement our Reddit analysis, we conducted a user study with 50 participants recruited via Amazon Mechanical Turk and Qualtrics. The study revealed that 76% of the participants indicated that privacy labels influence their app download decisions and the amount of data practice in the privacy label is the most significant factor.

View More Papers

No Source Code? No Problem! Twenty Years of Research...

Jack W. Davidson, Professor of Computer Science in the School of Engineering and Applied Science, University of Virginia

Read More

RContainer: A Secure Container Architecture through Extending ARM CCA...

Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College,…

Read More

Be Careful of What You Embed: Demystifying OLE Vulnerabilities

Yunpeng Tian (Huazhong University of Science and Technology), Feng Dong (Huazhong University of Science and Technology), Haoyi Liu (Huazhong University of Science and Technology), Meng Xu (University of Waterloo), Zhiniang Peng (Huazhong University of Science and Technology; Sangfor Technologies Inc.), Zesen Ye (Sangfor Technologies Inc.), Shenghui Li (Huazhong University of Science and Technology), Xiapu Luo…

Read More

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More