Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

As the number of mobile applications continues to grow, privacy labels (e.g. Apple’s Privacy Labels and Google’s Data Safety Section) emerge as a potential solution to help users understand how apps collect, use and share their data. However, it remains unclear whether these labels actually enhance user understanding to build trust in app developers or influence their download decisions. In this paper, we investigate user perceptions of privacy labels through a comprehensive analysis of online discussions and a structured user study. We first collect and analyze Reddit posts related to privacy labels, and manually analyze the discussions to understand users’ concerns and suggestions. Our analysis reveals that users are skeptical of self-reported privacy labels provided by developers and they struggle to interpret the terminology used in the labels. Users also expressed a desire for clearer explanations about why specific data is collected and emphasized the importance of third-party verification to ensure the accuracy of privacy labels. To complement our Reddit analysis, we conducted a user study with 50 participants recruited via Amazon Mechanical Turk and Qualtrics. The study revealed that 76% of the participants indicated that privacy labels influence their app download decisions and the amount of data practice in the privacy label is the most significant factor.

View More Papers

Formally Verifying the Newest Versions of the GNSS-centric TESLA...

Ioana Boureanu, Stephan Wesemeyer (Surrey Centre for Cyber Security, University of Surrey)

Read More

NDSS Symposium 2025 Welcome and Opening Remarks

General Chairs: David Balenson, USC Information Sciences Institute and Heng Yin, University of California, Riverside Program Chairs: Christina Pöpper, New York University Abu Dhabi and Hamed Okhravi, MIT Lincoln Laboratory Artifact Evaluation Chairs: Daniele Cono D’Elia, Sapienza University and Mathy Vanhoef, KU Leuven

Read More

ProvGuard: Detecting SDN Control Policy Manipulation via Contextual Semantics...

Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Read More