Harry Halpin (Nym Technologies)

With the ascendance of artificial intelligence (AI), one of the largest problems facing privacy-enhancing technologies (PETs) is how they can successfully counter-act the large-scale surveillance that is required for the collection of data–and metadata–necessary for the training of AI models. While there has been a flurry of research into the foundations of AI, the field of privacy-enhancing technologies still appears to be a grabbag of techniques without an overarching theoretical foundation. However, we will point to the potential unification of AI and PETS via the concepts of signal and noise, as formalized by informationtheoretic metrics like entropy. We overview the concept of entropy (“noise”) and its applications in both AI and PETs. For example, mixnets can be thought of as noise-generating networks, and so the inverse of neural networks. Then we defend the use of entropy as a metric to compare both different PETs, as well as both PETs and AI systems.

View More Papers

EvoCrawl: Exploring Web Application Code and State using Evolutionary...

Xiangyu Guo (University of Toronto), Akshay Kawlay (University of Toronto), Eric Liu (University of Toronto), David Lie (University of Toronto)

Read More

Onion Franking: Abuse Reports for Mix-Based Private Messaging

Matthew Gregoire (University of North Carolina at Chapel Hill), Margaret Pierce (University of North Carolina at Chapel Hill), Saba Eskandarian (University of North Carolina at Chapel Hill)

Read More

Eclipse Attacks on Monero's Peer-to-Peer Network

Ruisheng Shi (Beijing University of Posts and Telecommunications), Zhiyuan Peng (Beijing University of Posts and Telecommunications), Lina Lan (Beijing University of Posts and Telecommunications), Yulian Ge (Beijing University of Posts and Telecommunications), Peng Liu (Penn State University), Qin Wang (CSIRO Data61), Juan Wang (Wuhan University)

Read More

Vision: Comparison of AI-assisted Policy Development Between Professionals and...

Rishika Thorat (Purdue University), Tatiana Ringenberg (Purdue University)

Read More