Harry Halpin (Nym Technologies)

With the ascendance of artificial intelligence (AI), one of the largest problems facing privacy-enhancing technologies (PETs) is how they can successfully counter-act the large-scale surveillance that is required for the collection of data–and metadata–necessary for the training of AI models. While there has been a flurry of research into the foundations of AI, the field of privacy-enhancing technologies still appears to be a grabbag of techniques without an overarching theoretical foundation. However, we will point to the potential unification of AI and PETS via the concepts of signal and noise, as formalized by informationtheoretic metrics like entropy. We overview the concept of entropy (“noise”) and its applications in both AI and PETs. For example, mixnets can be thought of as noise-generating networks, and so the inverse of neural networks. Then we defend the use of entropy as a metric to compare both different PETs, as well as both PETs and AI systems.

View More Papers

Revealing the Black Box of Device Search Engine: Scanning...

Mengying Wu (Fudan University), Geng Hong (Fudan University), Jinsong Chen (Fudan University), Qi Liu (Fudan University), Shujun Tang (QI-ANXIN Technology Research Institute; Tsinghua University), Youhao Li (QI-ANXIN Technology Research Institute), Baojun Liu (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Min Yang (Fudan University)

Read More

GadgetMeter: Quantitatively and Accurately Gauging the Exploitability of Speculative...

Qi Ling (Purdue University), Yujun Liang (Tsinghua University), Yi Ren (Tsinghua University), Baris Kasikci (University of Washington and Google), Shuwen Deng (Tsinghua University)

Read More

RContainer: A Secure Container Architecture through Extending ARM CCA...

Qihang Zhou (Institute of Information Engineering, Chinese Academy of Sciences), Wenzhuo Cao (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyberspace Security, University of Chinese Academy of Sciences), Xiaoqi Jia (Institute of Information Engineering, Chinese Academy of Sciences), Peng Liu (The Pennsylvania State University, USA), Shengzhi Zhang (Department of Computer Science, Metropolitan College,…

Read More