Harry Halpin (Nym Technologies)

With the ascendance of artificial intelligence (AI), one of the largest problems facing privacy-enhancing technologies (PETs) is how they can successfully counter-act the large-scale surveillance that is required for the collection of data–and metadata–necessary for the training of AI models. While there has been a flurry of research into the foundations of AI, the field of privacy-enhancing technologies still appears to be a grabbag of techniques without an overarching theoretical foundation. However, we will point to the potential unification of AI and PETS via the concepts of signal and noise, as formalized by informationtheoretic metrics like entropy. We overview the concept of entropy (“noise”) and its applications in both AI and PETs. For example, mixnets can be thought of as noise-generating networks, and so the inverse of neural networks. Then we defend the use of entropy as a metric to compare both different PETs, as well as both PETs and AI systems.

View More Papers

On the Realism of LiDAR Spoofing Attacks against Autonomous...

Takami Sato (University of California, Irvine), Ryo Suzuki (Keio University), Yuki Hayakawa (Keio University), Kazuma Ikeda (Keio University), Ozora Sako (Keio University), Rokuto Nagata (Keio University), Ryo Yoshida (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More

Do (Not) Follow the White Rabbit: Challenging the Myth...

Soheil Khodayari (CISPA Helmholtz Center for Information Security), Kai Glauber (Saarland University), Giancarlo Pellegrino (CISPA Helmholtz Center for Information Security)

Read More

The (Un)usual Suspects – Studying Reasons for Lacking Updates...

Maria Hellenthal (CISPA Helmholtz Center for Information Security), Lena Gotsche (CISPA Helmholtz Center for Information Security), Rafael Mrowczynski (CISPA Helmholtz Center for Information Security), Sarah Kugel (Saarland University), Michael Schilling (CISPA Helmholtz Center for Information Security), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

SHAFT: Secure, Handy, Accurate and Fast Transformer Inference

Andes Y. L. Kei (Chinese University of Hong Kong), Sherman S. M. Chow (Chinese University of Hong Kong)

Read More