Fatemeh Khojasteh Dana, Saleh Khalaj Monfared, Shahin Tajik (Worcester Polytechnic Institute)

Satellites are highly vulnerable to adversarial glitches or high-energy radiation in space, which could cause faults on the onboard computer. Various radiation- and fault-tolerant methods, such as error correction codes (ECC) and redundancybased approaches, have been explored over the last decades to mitigate temporary soft errors on software and hardware. However, conventional ECC methods fail to deal with hard errors or permanent faults in the hardware components. This work introduces a detection- and response-based countermeasure to deal with partially damaged processor chips. It recovers the processor chip from permanent faults and enables continuous operation with available undamaged resources on the chip. We incorporate digitally-compatible delay-based sensors on the target processor’s chip to reliably detect the incoming radiation or glitching attempts on the physical fabric of the chip, even before a fault occurs. Upon detecting a fault in one or more components of the processor’s arithmetic logic unit (ALU), our countermeasure employs adaptive software recompilations to resynthesize and substitute the affected instructions with instructions of still functioning components to accomplish the task. Furthermore, if the fault is more widespread and prevents the correct operation of the entire processor, our approach deploys adaptive hardware partial reconfigurations to replace and reroute the failed components to undamaged locations of the chip. To validate our claims, we deploy a high-energy nearinfrared (NIR) laser beam on a RISC-V processor implemented on a 28 nm FPGA to emulate radiation and even hard errors by partially damaging the FPGA fabric. We demonstrate that our sensor can confidently detect the radiation and trigger the processor testing and fault recovery mechanisms. Finally, we discuss the overhead imposed by our countermeasure.

View More Papers

OrbID: Identifying Orbcomm Satellite RF Fingerprints

Cédric Solenthaler (ETH Zurich), Joshua Smailes (University of Oxford), Martin Strohmeier (armasuisse Science & Technology)

Read More

Rethinking Trust in Forge-Based Git Security

Aditya Sirish A Yelgundhalli (New York University), Patrick Zielinski (New York University), Reza Curtmola (New Jersey Institute of Technology), Justin Cappos (New York University)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More

Five Word Password Composition Policy

Sirvan Almasi (Imperial College London), William J. Knottenbelt (Imperial College London)

Read More