Dairo de Ruck, Jef Jacobs, Jorn Lapon, Vincent Naessens (DistriNet, KU Leuven, 3001 Leuven, Belgium)

Debugging is a fundamental testing technique that directly interacts with the functionality and current state of a running program. It enables the debugger to step through a program and meanwhile inspect registers and memory as part of the program state. When debugging, variables and parameters are assigned concrete values resulting in a specific program path to be explored. This makes software testing time-consuming and at the same time requiring substantial expertise. On the other hand, symbolic debugging can explore multiple paths by replacing concrete input values by symbolic ones and choose the paths to be explored.
angr is a dynamic symbolic execution (DSE) platform that can be programmed to symbolically execute a binary program with selected, possibly symbolic inputs. The binary is lifted to an intermediate, architecture independent representation, preparatory to the symbolic execution. This paper presents dAngr a tool that builds upon angr, a symbolic execution platform, enabling the user to debug binaries by means of GDB-like commands, and enhances this experience by means of symbolic execution and binary analysis capabilities. We also abstract the angr framework and symbolic execution by utilizing these commands. The power of dAngr is demonstrated on multiple examples including capture-the-flag challenges with different levels of complexity.

View More Papers

BitShield: Defending Against Bit-Flip Attacks on DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

Vision: The Price Should Be Right: Exploring User Perspectives...

Jacob Hopkins (Texas A&M University - Corpus Christi), Carlos Rubio-Medrano (Texas A&M University - Corpus Christi), Cori Faklaris (University of North Carolina at Charlotte)

Read More

Detecting IMSI-Catchers by Characterizing Identity Exposing Messages in Cellular...

Tyler Tucker (University of Florida), Nathaniel Bennett (University of Florida), Martin Kotuliak (ETH Zurich), Simon Erni (ETH Zurich), Srdjan Capkun (ETH Zuerich), Kevin Butler (University of Florida), Patrick Traynor (University of Florida)

Read More

A Key-Driven Framework for Identity-Preserving Face Anonymization

Miaomiao Wang (Shanghai University), Guang Hua (Singapore Institute of Technology), Sheng Li (Fudan University), Guorui Feng (Shanghai University)

Read More