Dairo de Ruck, Jef Jacobs, Jorn Lapon, Vincent Naessens (DistriNet, KU Leuven, 3001 Leuven, Belgium)

Debugging is a fundamental testing technique that directly interacts with the functionality and current state of a running program. It enables the debugger to step through a program and meanwhile inspect registers and memory as part of the program state. When debugging, variables and parameters are assigned concrete values resulting in a specific program path to be explored. This makes software testing time-consuming and at the same time requiring substantial expertise. On the other hand, symbolic debugging can explore multiple paths by replacing concrete input values by symbolic ones and choose the paths to be explored.
angr is a dynamic symbolic execution (DSE) platform that can be programmed to symbolically execute a binary program with selected, possibly symbolic inputs. The binary is lifted to an intermediate, architecture independent representation, preparatory to the symbolic execution. This paper presents dAngr a tool that builds upon angr, a symbolic execution platform, enabling the user to debug binaries by means of GDB-like commands, and enhances this experience by means of symbolic execution and binary analysis capabilities. We also abstract the angr framework and symbolic execution by utilizing these commands. The power of dAngr is demonstrated on multiple examples including capture-the-flag challenges with different levels of complexity.

View More Papers

User Comprehension and Comfort with Eye-Tracking and Hand-Tracking Permissions...

Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Read More

Poster: Understanding User Acceptance of Privacy Labels: Barriers and...

Jingwen Yan (Clemson University), Mohammed Aldeen (Clemson University), Jalil Harris (Clemson University), Kellen Grossenbacher (Clemson University), Aurore Munyaneza (Texas Tech University), Song Liao (Texas Tech University), Long Cheng (Clemson University)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More