Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Deep learning, particularly Transformer-based models, has recently gained traction in binary analysis, showing promising outcomes. Despite numerous studies customizing these models for specific applications, the impact of such modifications on performance remains largely unexamined. Our study critically evaluates four custom Transformer models (jTrans, PalmTree, StateFormer, Trex) across various applications, revealing that except for the Masked Language Model (MLM) task, additional pre-training tasks do not significantly enhance learning. Surprisingly, the original BERT model often outperforms these adaptations, indicating that complex modifications and new pre-training tasks may be superfluous. Our findings advocate for focusing on fine-tuning rather than architectural or task-related alterations to improve model performance in binary analysis.

Speaker's Biography: Dr. Heng Yin is a Professor in the Department of Computer Science and Engineering at University of California, Riverside. He obtained his PhD degree from the College of William and Mary in 2009. His research interests lie in computer security, with an emphasis on binary code analysis. His publications appear in top-notch technical conferences and journals, such as IEEE S&P, ACM CCS, USENIX Security, NDSS, ISSTA, ICSE, TSE, TDSC, etc. His research is sponsored by National Science Foundation (NSF), Defense Advanced Research Projects Agency (DARPA), Air Force Office of Scientific Research (AFOSR), and Office of Naval Research (ONR). In 2011, he received the prestigious NSF Career award. He received Google Security and Privacy Research Award, Amazon Research Award, DSN Distinguished Paper Award, and RAID Best Paper Award.

View More Papers

Enhancing Security in Third-Party Library Reuse – Comprehensive Detection...

Shangzhi Xu (The University of New South Wales), Jialiang Dong (The University of New South Wales), Weiting Cai (Delft University of Technology), Juanru Li (Feiyu Tech), Arash Shaghaghi (The University of New South Wales), Nan Sun (The University of New South Wales), Siqi Ma (The University of New South Wales)

Read More

Passive Inference Attacks on Split Learning via Adversarial Regularization

Xiaochen Zhu (National University of Singapore & Massachusetts Institute of Technology), Xinjian Luo (National University of Singapore & Mohamed bin Zayed University of Artificial Intelligence), Yuncheng Wu (Renmin University of China), Yangfan Jiang (National University of Singapore), Xiaokui Xiao (National University of Singapore), Beng Chin Ooi (National University of Singapore)

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

Similarity Metric Method for Binary Basic Blocks of Cross-Instruction...

Xiaochuan Zhang (Artificial Intelligence Research Center, National Innovation Institute of Defense Technology), Wenjie Sun (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianmin Pang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Fudong Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Zhen Ma (State Key Laboratory of Mathematical Engineering and Advanced…

Read More