Heng Yin, Professor, Department of Computer Science and Engineering, University of California, Riverside

Deep learning, particularly Transformer-based models, has recently gained traction in binary analysis, showing promising outcomes. Despite numerous studies customizing these models for specific applications, the impact of such modifications on performance remains largely unexamined. Our study critically evaluates four custom Transformer models (jTrans, PalmTree, StateFormer, Trex) across various applications, revealing that except for the Masked Language Model (MLM) task, additional pre-training tasks do not significantly enhance learning. Surprisingly, the original BERT model often outperforms these adaptations, indicating that complex modifications and new pre-training tasks may be superfluous. Our findings advocate for focusing on fine-tuning rather than architectural or task-related alterations to improve model performance in binary analysis.

Speaker's Biography: Dr. Heng Yin is a Professor in the Department of Computer Science and Engineering at University of California, Riverside. He obtained his PhD degree from the College of William and Mary in 2009. His research interests lie in computer security, with an emphasis on binary code analysis. His publications appear in top-notch technical conferences and journals, such as IEEE S&P, ACM CCS, USENIX Security, NDSS, ISSTA, ICSE, TSE, TDSC, etc. His research is sponsored by National Science Foundation (NSF), Defense Advanced Research Projects Agency (DARPA), Air Force Office of Scientific Research (AFOSR), and Office of Naval Research (ONR). In 2011, he received the prestigious NSF Career award. He received Google Security and Privacy Research Award, Amazon Research Award, DSN Distinguished Paper Award, and RAID Best Paper Award.

View More Papers

CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian...

Kaiyuan Zhang (Purdue University), Siyuan Cheng (Purdue University), Guangyu Shen (Purdue University), Bruno Ribeiro (Purdue University), Shengwei An (Purdue University), Pin-Yu Chen (IBM Research AI), Xiangyu Zhang (Purdue University), Ninghui Li (Purdue University)

Read More

DITTANY: Strength-Based Dynamic Information Flow Analysis Tool for x86...

Walid J. Ghandour, Clémentine Maurice (CNRS, CRIStAL)

Read More

The Philosopher’s Stone: Trojaning Plugins of Large Language Models

Tian Dong (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Guoxing Chen (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Yan Meng (Shanghai Jiao Tong University), Shaofeng Li (Southeast University), Zhen Liu (Shanghai Jiao Tong University), Haojin Zhu (Shanghai Jiao Tong University)

Read More

Unlocking the Potential of Domain Aware Binary Analysis in...

Dr. Zhiqiang Lin (Distinguished Professor of Engineering at The Ohio State University)

Read More