André Pacteau, Antonino Vitale, Davide Balzarotti, Simone Aonzo (EURECOM)

Cryptographic function detection in binaries is a crucial task in software reverse engineering (SRE), with significant implications for secure communications, regulatory compliance, and malware analysis. While traditional approaches based on cryptographic signatures are common, they are challenging to maintain and often prone to false negatives in the case of custom implementations or false positives when short signatures are used. Alternatively, techniques based on statistical analysis of mnemonics in disassembled code have emerged, positing that cryptographic functions tend to involve a high frequency of arithmetic and logic operations. However, these methods have predominantly been formulated as heuristics, with thresholds that may not always be optimal or universally applicable.

In this paper, we present Mnemocrypt, a machine learningbased tool for detecting cryptographic functions in x86 executables, which we release as an IDA Pro plugin. Using a random forest classifier, Mnemocrypt leverages both structural and content-related metrics of functions at varying levels of granularity to make its predictions. The primary design goal of Mnemocrypt is to minimize false positives, as misleading results could lead analysts down incorrect investigative paths, undermining the efficacy of reverse engineering efforts. Trained on a diverse dataset of cryptographic libraries compiled with different optimization levels, Mnemocrypt achieves robust detection capabilities without relying on predefined signatures or computationally expensive data flow graph analysis, ensuring high efficiency.

Our evaluation, conducted on 231 Portable Executable x86 Windows malware samples from different families, demonstrates that Mnemocrypt, when configured with a high confidence threshold, significantly outperforms existing solutions in terms of false positives. The few false positives detected by Mnemocrypt were only related to compression functions or complex data processing routines, further emphasizing the tool’s precision in distinguishing algorithms that use instructions similar to cryptographic processes. Finally, with a median execution time of six seconds, Mnemocrypt provides the reverse engineering community with a practical and efficient solution for identifying cryptographic functions, paving the way for further studies to improve this type of model.

View More Papers

Automatic Insecurity: Exploring Email Auto-configuration in the Wild

Shushang Wen (School of Cyber Science and Technology, University of Science and Technology of China), Yiming Zhang (Tsinghua University), Yuxiang Shen (School of Cyber Science and Technology, University of Science and Technology of China), Bingyu Li (School of Cyber Science and Technology, Beihang University), Haixin Duan (Tsinghua University; Zhongguancun Laboratory), Jingqiang Lin (School of Cyber…

Read More

Starshields for iOS: Navigating the Security Cosmos in Satellite...

Jiska Classen (Hasso Plattner Institute, University of Potsdam), Alexander Heinrich (TU Darmstadt, Germany), Fabian Portner (TU Darmstadt, Germany), Felix Rohrbach (TU Darmstadt, Germany), Matthias Hollick (TU Darmstadt, Germany)

Read More

FUZZUER: Enabling Fuzzing of UEFI Interfaces on EDK-2

Connor Glosner (Purdue University), Aravind Machiry (Purdue University)

Read More

DLBox: New Model Training Framework for Protecting Training Data

Jaewon Hur (Seoul National University), Juheon Yi (Nokia Bell Labs, Cambridge, UK), Cheolwoo Myung (Seoul National University), Sangyun Kim (Seoul National University), Youngki Lee (Seoul National University), Byoungyoung Lee (Seoul National University)

Read More