Caleb Helbling, Graham Leach-Krouse, Sam Lasser, Greg Sullivan (Draper)

This paper introduces cozy, a tool for analyzing and visualizing differences between two versions of a software binary. The primary use case for cozy is validating “micropatches”: small binary or assembly-level patches inserted into existing compiled binaries. To perform this task, cozy leverages the Python-based angr symbolic execution framework. Our tool analyzes the output of symbolic execution to find end states for the pre- and post-patched binaries that are compatible (reachable from the same input). The tool then compares compatible states for observable differences in registers, memory, and side effects. To aid in usability, cozy comes with a web-based visual interface for viewing comparison results. This interface provides a rich set of operations for pruning, filtering, and exploring different types of program data.

View More Papers

Ghidra: Is Newer Always Better?

Jonathan Crussell (Sandia National Laboratories)

Read More

Victim-Centred Abuse Investigations and Defenses for Social Media Platforms

Zaid Hakami (Florida International University and Jazan University), Ashfaq Ali Shafin (Florida International University), Peter J. Clarke (Florida International University), Niki Pissinou (Florida International University), and Bogdan Carbunar (Florida International University)

Read More

Reinforcement Unlearning

Dayong Ye (University of Technology Sydney), Tianqing Zhu (City University of Macau), Congcong Zhu (City University of Macau), Derui Wang (CSIRO’s Data61), Kun Gao (University of Technology Sydney), Zewei Shi (CSIRO’s Data61), Sheng Shen (Torrens University Australia), Wanlei Zhou (City University of Macau), Minhui Xue (CSIRO's Data61)

Read More

Evaluating Machine Learning-Based IoT Device Identification Models for Security...

Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

Read More