Jiayi Lin (The University of Hong Kong), Qingyu Zhang (The University of Hong Kong), Junzhe Li (The University of Hong Kong), Chenxin Sun (The University of Hong Kong), Hao Zhou (The Hong Kong Polytechnic University), Changhua Luo (The University of Hong Kong), Chenxiong Qian (The University of Hong Kong)

Software libraries are foundational components in modern software ecosystems. Vulnerabilities within these libraries pose significant security threats. Fuzzing is a widely used technique for uncovering software vulnerabilities. However, its application to software libraries poses considerable challenges, necessitating carefully crafted drivers that reflect diverse yet correct API usages. Existing works on automatic library fuzzing either suffer from high false positives due to API misuse caused by arbitrarily generated API sequences, or fail to produce diverse API sequences by overly relying on existing code snippets that express restricted API usages, thus missing deeper API vulnerabilities.
This work proposes NEXZZER, a new fuzzer that automatically detects vulnerabilities in libraries. NEXZZER employs a hybrid relation learning strategy to continuously infer and evolve API relations, incorporating a novel driver architecture to augment the testing coverage of libraries and facilitate deep vulnerability discovery. We evaluated NEXZZER across 18 libraries and the Google Fuzzer Test Suite. The results demonstrate its considerable advantages in code coverage and vulnerability-finding capabilities compared to prior works. NEXZZER can also automatically identify and filter out most API misuse crashes. Moreover, NEXZZER discovered 27 previously unknown vulnerabilities in well-tested libraries, including OpenSSL and libpcre2. At the time of writing, developers have confirmed 24 of them, and 9 were fixed because of our reports.

View More Papers

BitShield: Defending Against Bit-Flip Attacks on DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Sihang Hu (Huawei Technologies), Tianxiang Li (Huawei Technologies), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

Transparency or Information Overload? Evaluating Users’ Comprehension and Perceptions...

Xiaoyuan Wu (Carnegie Mellon University), Lydia Hu (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Hana Habib (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More

Poster: FORESIGHT, A Unified Framework for Threat Modeling and...

ChaeYoung Kim (Seoul Women's University), Kyounggon Kim (Naif Arab University for Security Sciences)

Read More

Rediscovering Method Confusion in Proposed Security Fixes for Bluetooth

Maximilian von Tschirschnitz (Technical University of Munich), Ludwig Peuckert (Technical University of Munich), Moritz Buhl (Technical University of Munich), Jens Grossklags (Technical University of Munich)

Read More