Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Service workers are a powerful technology supported by all major modern browsers that can improve users' browsing experience by offering capabilities similar to those of native applications. While they are gaining significant traction in the developer community, they have not received much scrutiny from security researchers. In this paper, we explore the capabilities and inner workings of service workers and conduct the first comprehensive large-scale study of their API use in the wild. Subsequently, we show how attackers can exploit the strategic placement of service workers for history-sniffing in most major browsers, including Chrome and Firefox. We demonstrate two novel history-sniffing attacks that exploit the lack of appropriate isolation in these browsers, including a non-destructive cache-based version. Next, we present a series of use cases that illustrate how our techniques enable privacy-invasive attacks that can infer sensitive application-level information, such as a user's social graph. We have disclosed our techniques to all vulnerable vendors, prompting the Chromium team to explore a redesign of their site isolation mechanisms for defending against our attacks. We also propose a countermeasure that can be incorporated by websites to protect their users, and develop a tool that streamlines its deployment, thus facilitating adoption at a large scale. Overall, our work presents a cautionary tale on the severe risks of browsers deploying new features without an in-depth evaluation of their security and privacy implications.

View More Papers

Refining Indirect Call Targets at the Binary Level

Sun Hyoung Kim (Penn State), Cong Sun (Xidian University), Dongrui Zeng (Penn State), Gang Tan (Penn State)

Read More

PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home...

Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Read More

Reinforcement Learning-based Hierarchical Seed Scheduling for Greybox Fuzzing

Jinghan Wang (University of California, Riverside), Chengyu Song (University of California, Riverside), Heng Yin (University of California, Riverside)

Read More

WATSON: Abstracting Behaviors from Audit Logs via Aggregation of...

Jun Zeng (National University of Singapore), Zheng Leong Chua (Independent Researcher), Yinfang Chen (National University of Singapore), Kaihang Ji (National University of Singapore), Zhenkai Liang (National University of Singapore), Jian Mao (Beihang University)

Read More