Adam Humphries (University of North Carolina), Kartik Cating-Subramanian (University of Colorado), Michael K. Reiter (Duke University)

We present the design and implementation of a tool called TASE that uses transactional memory to reduce the latency of symbolic-execution applications with small amounts of symbolic state.
Execution paths are executed natively while operating on concrete values, and only when execution encounters symbolic values (or modeled functions) is native execution suspended and interpretation begun. Execution then returns to its native mode when symbolic values are no longer encountered. The key innovations in the design of TASE are a technique for amortizing the cost of checking whether values are symbolic over few instructions, and the use of hardware-supported transactional memory (TSX) to implement native execution that rolls back with no effect when use of a symbolic value is detected (perhaps belatedly). We show that TASE has the potential to dramatically improve some latency-sensitive applications of symbolic execution, such as methods to verify the behavior of a client in a client-server application.

View More Papers

Rosita: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers

Madura A. Shelton (University of Adelaide), Niels Samwel (Radboud University), Lejla Batina (Radboud University), Francesco Regazzoni (University of Amsterdam and ALaRI – USI), Markus Wagner (University of Adelaide), Yuval Yarom (University of Adelaide and Data61)

Read More

Detecting DolphinAttacks Based on Microphone Array

Guoming Zhang, Xiaoyu Ji (Zhejiang University)

Read More

Scenario-Driven Assessment of Cyber Risk Perception at the Security...

Simon Parkin (TU Delft), Kristen Kuhn, Siraj Ahmed Shaikh (Coventry University)

Read More