Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

We present BGP-iSec, an enhancement of the BGPsec protocol for securing BGP, the Internet's inter-domain routing protocol. BGP-iSec ensures additional and stronger security properties, compared to BGPsec, without significant extra overhead. The main improvements are: (i) Security for partial adoption: BGP-iSec provides significant security benefits for early adopters, in contrast to BGPsec, which requires universal adoption. (ii) Defense against route leakage: BGP-iSec defends against route leakage, a common cause of misrouting that is not prevented by BGPsec. (iii) Integrity of attributes: BGP-iSec ensures the integrity of revertible attributes, thereby preventing announcement manipulation attacks not prevented by BGPsec. We show that BGP-iSec achieves these goals using extensive simulations as well as security analysis. The BGP-iSec design conforms, where possible, with the BGPsec design, modifying it only where necessary to improve security. By providing stronger security guarantees, especially for partial adoption, we hope BGP-iSec will be a step towards finally protecting inter-domain routing, which remains, for many years, a vulnerability of the Internet's infrastructure.

View More Papers

Decentralized Information-Flow Control for ROS2

Nishit V. Pandya (Indian Institute of Science Bangalore), Himanshu Kumar (Indian Institute of Science Bangalore), Gokulnath M. Pillai (Indian Institute of Science Bangalore), Vinod Ganapathy (Indian Institute of Science Bangalore)

Read More

Resilient Routing for Low Earth Orbit Mega-Constellation Networks

Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Read More

Beyond the Surface: Uncovering the Unprotected Components of Android...

Hao Zhou (The Hong Kong Polytechnic University), Shuohan Wu (The Hong Kong Polytechnic University), Chenxiong Qian (University of Hong Kong), Xiapu Luo (The Hong Kong Polytechnic University), Haipeng Cai (Washington State University), Chao Zhang (Tsinghua University)

Read More

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More