Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

We present BGP-iSec, an enhancement of the BGPsec protocol for securing BGP, the Internet's inter-domain routing protocol. BGP-iSec ensures additional and stronger security properties, compared to BGPsec, without significant extra overhead. The main improvements are: (i) Security for partial adoption: BGP-iSec provides significant security benefits for early adopters, in contrast to BGPsec, which requires universal adoption. (ii) Defense against route leakage: BGP-iSec defends against route leakage, a common cause of misrouting that is not prevented by BGPsec. (iii) Integrity of attributes: BGP-iSec ensures the integrity of revertible attributes, thereby preventing announcement manipulation attacks not prevented by BGPsec. We show that BGP-iSec achieves these goals using extensive simulations as well as security analysis. The BGP-iSec design conforms, where possible, with the BGPsec design, modifying it only where necessary to improve security. By providing stronger security guarantees, especially for partial adoption, we hope BGP-iSec will be a step towards finally protecting inter-domain routing, which remains, for many years, a vulnerability of the Internet's infrastructure.

View More Papers

Overconfidence is a Dangerous Thing: Mitigating Membership Inference Attacks...

Zitao Chen (University of British Columbia), Karthik Pattabiraman (University of British Columbia)

Read More

From Hardware Fingerprint to Access Token: Enhancing the Authentication...

Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

Read More

Experimental Analyses of the Physical Surveillance Risks in Client-Side...

Ashish Hooda (University of Wisconsin-Madison), Andrey Labunets (UC San Diego), Tadayoshi Kohno (University of Washington), Earlence Fernandes (UC San Diego)

Read More

A Comparison of Three Approaches to Assist Users in...

Michael Clark (Brigham Young University), Scott Ruoti (The University of Tennessee), Michael Mendoza (Imperial College London), Kent Seamons (Brigham Young University)

Read More