Sivaramakrishnan Ramanathan (University of Southern California/Information Sciences Institute), Jelena Mirkovic (University of Southern California/Information Sciences Institute), Minlan Yu (Harvard University)

IP address blacklists are a useful source of information about repeat attackers. Such information can be used to prioritize which traffic to divert for deeper inspection (e.g., repeat offender traffic), or which traffic to serve first (e.g., traffic from sources that are not blacklisted). But blacklists also suffer from overspecialization – each list is geared towards a specific purpose – and they may be inaccurate due to misclassification or stale information. We propose BLAG, a system that evaluates and aggregates multiple blacklists feeds, producing a more useful, accurate and timely master blacklist, tailored to the specific customer network. BLAG uses a sample of the legitimate sources of the customer network’s inbound traffic to evaluate the accuracy of each blacklist over regions of address space. It then leverages recommendation systems to select the most accurate information to aggregate into its master blacklist. Finally, BLAG identifies portions of the master blacklist that can be expanded into larger address regions (e.g. /24 prefixes) to uncover more malicious addresses with minimum collateral damage. Our evaluation of 157 blacklists of various attack types and three ground-truth datasets shows that BLAG achieves high specificity up to 99%, improves recall by up to 114 times compared to competing approaches, and detects attacks up to 13.7 days faster, which makes it a promising approach for blacklist generation.

View More Papers

Automated Discovery of Cross-Plane Event-Based Vulnerabilities in Software-Defined Networking

Benjamin E. Ujcich (University of Illinois at Urbana-Champaign), Samuel Jero (MIT Lincoln Laboratory), Richard Skowyra (MIT Lincoln Laboratory), Steven R. Gomez (MIT Lincoln Laboratory), Adam Bates (University of Illinois at Urbana-Champaign), William H. Sanders (University of Illinois at Urbana-Champaign), Hamed Okhravi (MIT Lincoln Laboratory)

Read More

Cross-Origin State Inference (COSI) Attacks: Leaking Web Site States...

Avinash Sudhodanan (IMDEA Software Institute), Soheil Khodayari (CISPA Helmholtz Center for Information Security), Juan Caballero (IMDEA Software Institute)

Read More

Metamorph: Injecting Inaudible Commands into Over-the-air Voice Controlled Systems

Tao Chen (City University of Hong Kong), Longfei Shangguan (Microsoft), Zhenjiang Li (City University of Hong Kong), Kyle Jamieson (Princeton University)

Read More

ConTExT: A Generic Approach for Mitigating Spectre

Michael Schwarz (Graz University of Technology), Moritz Lipp (Graz University of Technology), Claudio Canella (Graz University of Technology), Robert Schilling (Graz University of Technology and Know-Center GmbH), Florian Kargl (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More