Xiao Yi (The Chinese University of Hong Kong), Yuzhou Fang (The Chinese University of Hong Kong), Daoyuan Wu (The Chinese University of Hong Kong), Lingxiao Jiang (Singapore Management University)

Due to the open-source nature of the blockchain ecosystem, it is common for new blockchains to fork or partially reuse the code of classic blockchains. For example, the popular Dogecoin, Litecoin, Binance BSC, and Polygon are all variants of Bitcoin/Ethereum. These “forked” blockchains thus could encounter similar vulnerabilities that are propagated from Bitcoin/Ethereum during forking or subsequently commit fetching. In this paper, we conduct a systematic study of detecting and investigating the propagated vulnerabilities in forked blockchain projects. To facilitate this study, we propose BlockScope, a novel tool that can effectively and efficiently detect multiple types of cloned vulnerabilities given an input of existing Bitcoin/Ethereum security patches. Specifically, BlockScope adopts similarity-based code match and designs a new way of calculating code similarity to cover all the syntax-wide variant (i.e., Type-1, Type-2, and Type-3) clones. Moreover, BlockScope automatically extracts and leverages the contexts of patch code to narrow down the search scope and locate only potentially relevant code for comparison.

Our evaluation shows that BlockScope achieves good precision and high recall both at 91.8% (1.8 times higher recall than that in the state-of-the-art ReDeBug while with close precision). BlockScope allows us to discover 101 previously unknown vulnerabilities in 13 out of the 16 forked projects of Bitcoin and Ethereum, including 16 from Dogecoin, 6 from Litecoin, 1 from Binance BSC, and 4 from Optimism. We have reported all the vulnerabilities to their developers; 40 of them have been patched or accepted, 66 were acknowledged or under pending, and only 4 were rejected. We further investigate the propagation and patching processes of discovered vulnerabilities, and reveal three types of vulnerability propagation from source to forked projects, as well as the long delay (mostly over 200 days) for releasing patches in Bitcoin forks (vs. ∼100 days for Ethereum forks).

View More Papers

Privacy-Preserving Database Fingerprinting

Tianxi Ji (Texas Tech University), Erman Ayday (Case Western Reserve University), Emre Yilmaz (University of Houston-Downtown), Ming Li (CSE Department The University of Texas at Arlington), Pan Li (Case Western Reserve University)

Read More

InfoMasker: Preventing Eavesdropping Using Phoneme-Based Noise

Peng Huang (Zhejiang University), Yao Wei (Zhejiang University), Peng Cheng (Zhejiang University), Zhongjie Ba (Zhejiang University), Li Lu (Zhejiang University), Feng Lin (Zhejiang University), Fan Zhang (Zhejiang University), Kui Ren (Zhejiang University)

Read More

An Exploratory study of Malicious Link Posting on Social...

Muhammad Hassan, Mahnoor Jameel, Masooda Bashir (University of Illinois at Urbana Champaign)

Read More

VulHawk: Cross-architecture Vulnerability Detection with Entropy-based Binary Code Search

Zhenhao Luo (College of Computer, National University of Defense Technology), Pengfei Wang (College of Computer, National University of Defense Technology), Baosheng Wang (College of Computer, National University of Defense Technology), Yong Tang (College of Computer, National University of Defense Technology), Wei Xie (College of Computer, National University of Defense Technology), Xu Zhou (College of Computer,…

Read More